Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Gut Microbiota and (Neuro)Inflammation: Involvement of Endotoxin in the Pathogenesis of Endogenous Psychoses

https://doi.org/10.30629/2618-6667-2023-21-5-86-96

Abstract

Background: there is a two-way relationship between the gut microbiota (GM) and the brain, both in normal and pathological conditions. It has been suggested that disturbances in GM composition and function can lead to the activation of (neuro) inflammation or its maintenance in mental disorders. 
Objective: analysis of scientific publications, including the results of our own research on the gut microbiota, its role in the modulation of brain functions and involvement in the maintenance of (neuro)inflammation in endogenous mental disorders. 
Material and method: using the keywords “gut–microbiota” and “microbiota–gut–brain axis/mental disorders”, “inflammation”, “neuroinflammation”, articles and reviews were searched in databases and electronic libraries of scientific publications Medline/PubMed, Scopus, Google Scholar, RSCI, and other sources. 
Results: on the basis of the analysis of literature sources, general information about GM, its composition, functions and main ways of interaction with the brain is given. The role of GM in the development and maintenance of (neuro)inflammation, currently considered as one of the pathogenetic mechanisms of mental disorders, is discussed. Particular attention is paid to the results of own studies on the role of endotoxin (ET) (lipopolysaccharide — LPS) and inflammation in the development of endogenous psychoses and the relationship of these indicators with the effectiveness of pharmacotherapy. 
Conclusion: it has been established that GM is an important participant and regulator of neuro-immune interactions. The possible role of GM in the maintenance of (neuro)inflammation in endogenous mental disorders and the participation of endotoxin aggression (EA) in the formation of therapeutic resistance in endogenous psychoses were revealed.

About the Authors

S. A. Zozulya
FSBSI “Mental Health Research Centre”
Russian Federation

Svetlana A. Zozulya, Cand. of Sci. (Biol.), Leading Researcher, Laboratory of Neuroimmunology

Moscow



M. Yu. Yakovlev
FSBSI “Research Institute of General Pathology and Pathophysiology”; Ltd. Clinical Diagnostics Society, Institute of General and Clinical Pathology RANS
Russian Federation

Mikhail Yu. Yakovlev, Member of the Russian Academy of Natural Sciences, Dr. of Sci. (Med.), Professor, Head of the Laboratory, Laboratory of Systemic Endotoxemia and Shock, General Director

Moscow



T. P. Klyushnik
FSBSI “Mental Health Research Centre”
Russian Federation

Tatyana P. Klyushnik, Dr. of Sci. (Med.), Professor, Head of the Laboratory, the Laboratory of Neuroimmunology, Director

Moscow



References

1. Miller BJ, Goldsmith DR. Evaluating the hypothesis that schizophrenia is an inflammatory disorder. J FOCUS. 2020;18(4):391–401. doi: 1176/appi.focus.20200015

2. Jeppesen R, Orlovska-Waast S, Sørensen NV, Christensen RHB, Benros ME. Cerebrospinal fluid and blood biomarkers of neuroinflammation and blood-brain barrier in psychotic disorders and individually matched healthy controls. Schizophr Bull. 2022;48(6):1206–1216. doi: 10.1093/schbul/sbac098

3. Голимбет ВЕ, Клюшник ТП. Молекулярно-генетический иммунологический аспекты формирования психопатологических симптомов при шизофрении. Журнал неврологии и психиатрии имени С.С. Корсакова. 2022;122(10):66–71. doi: 10.17116/jnevro202212210166 Golimbet VE, Klyushnik TP. Molecular-genetic and immunological aspects of the formation of psychopathological symptoms in schizophrenia. S.S. Korsakov Journal of neurology and psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2022;122(10):66–71. (In Russ). doi: 10.17116/jnevro202212210166

4. Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, Miller AH, Mantovani A, Weyand CM, Barzilai N, Goronzy JJ, Rando TA, Effros RB, Lucia A, Kleinstreuer N, Slavich GM. Chronic inflammation in the etiology of disease across the life span. Nat Med. 2019;25(12):1822–1832. doi: 10.1038/s41591-019-0675-0

5. Кайбышева ВО, Жарова МЕ, Филимендикова КЮ, Никонов ЕЛ. Микробиом человека: возрастные изменения и функции. Доказательная гастроэнтерология. 2020;9(2):42–55. doi: 10.17116/dokgastro2020902142 Kaibysheva VO, Zharova ME, Filimendikova KYu, Nikonov EL. Human microbiome: age-related changes and functions. Russian Journal of Evidence-Based Gastroenterology. 2020;9(2):42–55. (In Russ.). doi: 10.17116/dokgastro2020902142

6. Arora T, Bäckhed F. The gut microbiota and metabolic disease: current understanding and future perspectives. J Intern Med. 2016;280(4):339–349. doi: 10.1111/joim.12508.

7. Moya A, Ferrer M. Functional redundancy-induced stability of gut microbiota subjected to disturbance. Trends in Microbiology. 2016;24(5):402–413. doi: 10.1016/j.tim.2016.02.002

8. Черневская ЕА, Белобородова НВ. Микробиота кишечника при критических состояниях (обзор). Общая реаниматология. 2018;14(5):96–119. doi: 10.15360/1813-9779-2018-5-96-119 Chernevskaya EA, Beloborodova NV. Gut microbiome in critical illness (review). General Reanimatology. 2018;14(5):96–119. (In Russ.). doi: 10.17116/dokgastro2020902142

9. Микробиота: под ред. ЕЛ. Никонова, ЕН Поповой. М.: Издательство Медиа Сфера; 2019. Microbiota: pod red. E.L. Nikonova, E.N. Popovoy. M.: Izdatel’stvo Media Sfera; 2019. (In Russ.)

10. Боярский КЮ, Кахиани ЕИ. Микробиом репродуктивной системы человека. Проблемы репродукции. 2019;25(4):27–34. doi: 10.17116/repro20192504127 Bojarskij KIu, Kachiani EI. Microbiome of the human reproductive system. Russian Journal of Human Reproduction. 2019;25(4):27–34. (In Russ.). doi: 10.17116/repro20192504127

11. Юдина ЮВ, Корсунский АА, Аминова АИ, Абдуллаева ГД, Продеус АП. Микробиота кишечника как отдельная система организма. Доказательная гастроэнтерология. 2019;8(4):36–43. doi: 10.17116/dokgastro2019804-05136 Yudina YuV, Korsunsky AA, Aminova AI, Abdullaeva GD, Prodeus AP. Gut microbiota as a separate body system. Russian Journal of Evidence-Based Gastroenterology. 2019;8(4):36–43. (In Russ.). doi: 10.17116/dokgastro2019804-05136

12. Sarkar A, Yoo JY, Valeria Ozorio Dutra S, Morgan KH, Groer M. The association between early-life gut microbiota and long-term health and diseases. J Clin Med. 2021;10(3):459. doi: 10.3390/jcm10030459

13. Meng Y, Sun J, Zhang G. Fecal microbiota transplantation holds the secret to youth. Mech Ageing Dev. 2023;14:111823. doi: 10.1016/j.mad.2023.111823. Epub ahead of print.

14. Тренева ЕВ, Булгакова СВ, Романчук ПИ, Захарова НО, Сиротко ИИ. Мозг и микробиота: нейроэндокринные и гериатрические аспекты. Бюллетень науки и практики. 2019;5(9):26–52. doi: 10.33619/2414-2948/46/03 Treneva EV, Bulgakova SV, Romanchuk PI, Zakharova NO, Sirotko II. The brain and microbiota: neuroendocrine and geriatric aspects. Bulletin of Science and Practice. 2019;5(9):26–52. (In Russ.). doi: 10.33619/2414-2948/46/03

15. Ghosh TS, Shanahan F, O’Toole PW. The gut microbiome as a modulator of healthy ageing. Nat Rev Gastroenterol Hepatol. 2022;19(9):565–584. doi: 10.1038/s41575-022-00605-x

16. Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, Suda W, Takeshita K, Sasaki T, Okamoto S, Skelly AN, Okamura Y, Vlamakis H, Li Y, Tanoue T, Takei H, Nittono H, Narushima S, Irie J, Itoh H, Moriya K, Sugiura Y, Suematsu M, Moritoki N, Shibata S, Littman DR, Fischbach MA, Uwamino Y, Inoue T, Honda A, Hattori M, Murai T, Xavier RJ, Hirose N, Honda K. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021;599(7885):458–464. doi: 10.1038/s41586-021-03832-5

17. Кузнецова ЭЭ, Горохова ВГ, Богородская СЛ. Микробиота кишечника. Роль в развитии различных патологий. Клиническая лабораторная диагностика. 2016;61(10):723–726. doi: 10.18821/0869-2084-2016-61-10-723-726 Kuznetsova EE. Gorokhova VG, Bogorodskaya SL. The microbiota of intestine. The role in development of various pathologies. Klinicheskaya Laboratornaya Diagnostika/Russian Clinical Laboratory Diagnostics. 2016;61(10):723–726. (In Russ.). doi: 10.18821/0869-2084-2016-61-10-723-726

18. Мазанкова ЛН, Рыбальченко ОВ, Николаева ИВ. Микродисбиоз и эндогенные инфекции: руководство для врачей. М.: ГЭОТАР-Медиа, 2018. Mazankova LN, Rybal’chenko OV, Nikolaeva IV. Mikrodisbioz i endogennye infekcii: rukovodstvo dlya vrachej. M.: GEOTAR-Media, 2018. (In Russ.).

19. Dothel G, Barbaro MR, Di Vito A, Ravegnini G, Gorini F, Monesmith S, Coschina E, Benuzzi E, Fuschi D, Palombo M, Bonomini F, Morroni F, Hrelia P, Barbara G, Angelini S. New insights into irritable bowel syndrome pathophysiological mechanisms: contribution of epigenetics. J Gastroenterol. 2023. doi: 10.1007/s00535-023-01997-6 Epub ahead of print.

20. Оганезова И.А. Кишечная микробиота и иммунитет: иммуномодулирующие эффекты Lactobacillus rhamnosus GG. РМЖ. 2018;9:39–44. Oganezova IA. Intestinal microbiota and immunity: immunomodulatory effects of Lactobacillus rhamnosus GG. RMJ. 2018;9:39–44. (In Russ.).

21. Сotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium; Doré J, Zucker JD, Clément K, Ehrlich SD. Dietary intervention impact on gut microbial gene richness. Nature. 2013;500(7464):585–588. doi: 10.1038/nature12480

22. Hrncir T. Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options. Microorganisms. 2022;10(3):578. doi: 10.3390/microorganisms10030578

23. Panthee B, Gyawali S, Panthee P, Techato K. Environmental and Human Microbiome for Health. Life (Basel). 2022;12(3):456. doi: 10.3390/life12030456

24. Комарова ОН, Хавкин АИ. Взаимосвязь стресса, иммунитета и кишечной микробиоты. Педиатрическая фармакология. 2020;17(1):18–24. doi: 10.15690/pf.v17i1.2078 Komarova ОN, Khavkin AI. Correlation between stress, immunity and intestinal microbiota. Pediatricheskaya farmakologiya/Pediatric pharmacology. 2020;17(1):18–24. (In Russ.). doi: 10.15690/pf.v17i1.2078

25. Margolis KG, Cryan JF, Mayer EA. The Microbiota– Gut–Brain Axis: From Motility to Mood. Gastroenterology. 2021;160(5):1486–1501. doi: 10.1053/j.gastro.2020.10.066

26. Haq S, Grondin JA, Khan WI. Tryptophan-derived serotonin-kynurenine balance in immune activation and intestinal inflammation. FASEB J. 2021;35(10):e21888. doi: 10.1096/fj.202100702R

27. Bonaz B, Sinniger V, Pellissier S. Vagus nerve stimulation at the interface of brain-gut interactions. Cold Spring Harb Perspect Med. 2019;9(8):a034199. doi: 10.1101/cshperspect.a034199

28. Яковлев МЮ. Кишечный эндотоксин и воспаление. В кн.: Дерматовенерология. Национальное руководство. Краткое издание. Под ред. ЮС Бутова, ЮК Скрипкина, ОЛ Иванова. М.: ГЭОТАР-Медиа, 2013:70–76. Yakovlev MYu. Kishechnyj endotoksin i vospalenie. V kn.: Dermatologiya. Nacional’noe rukovodstvo. Kratkoe izdanie. Pod red. YuS Butova, YuK Skripkina, OL Ivanova. M.: GEOTAR-Media, 2013:70–76. (In Russ.).

29. Яковлев МЮ. Системная эндотоксинемия: гомеостаз и общая патология. М.: Издательство «Наука», 2021. 182 с. Yakovlev MYu. Sistemnaya endotoksinemiya: gomeostaz i obshchaya patologiya. M.: Izdatel’stvo “Nauka”, 2021. 182 s. (In Russ.).

30. Okorokov PL, Anikhovskaya IA, Yakovleva MM, Lazareva SI, Melamud AA, Meshkov MV, Salachov IM, Enuchidze GG, Yakovlev MYu. Nutritional factors of inflammation induction or lipid mechanism of endotoxin transport. Human Physiology. 2012;(38)6:649– 655. doi: 10.1134/S0362119712060102

31. Sun LJ, Li JN, Nie YZ. Gut hormones in microbiota-gut-brain cross-talk. Chin Med J. 2020;5;133(7):826– 833. doi: 10.1097/CM9.0000000000000706

32. Borre YE, Moloney RD, Clarke G, Dinan TG, Cryan JF. The impact of microbiota on brain and behavior: mechanisms & therapeutic potential. Adv Exp Med Biol. 2014;817:373–403. doi: 10.1007/978-1-4939-0897-4_17

33. Takahashi D, Kimura S, Hase K. Intestinal immunity: to be, or not to be, induced? That is the question. Int Immunol. 2021:25;33(12):755–759. doi: 10.1093/intimm/dxab051.

34. Pietrzak B, Tomela K, Olejnik-Schmidt A, Mackiewicz A, Schmidt M. Secretory IGA in intestinal mucosal secretions as an adaptive barrier against microbial cells. Int J Mol Sci. 2020:4;21(23):9254. doi: 10.3390/ijms21239254

35. Ivanov II, Littman DR. Modulation of immune homeostasis by commensal bacteria. Curr Opin Microbiol. 2011;14(1):106–114. doi: 10.1016/j.mib.2010.12.003

36. Peng C, Ouyang Y, Lu N, Li N. The NF-κB signaling pathway, the microbiota, and gastrointestinal tumorigenesis: recent advances. Front Immunol. 2020;11:1387. doi: 10.3389/fimmu.2020.01387

37. Peterson CT, Sharma V, Elmén L, Peterson SN. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota. Clin Exp Immunol. 2015;179(3):363–377. doi: 10.1111/cei.12474

38. Molinero N, Antón-Fernández A, Hernández F, Ávila J, Bartolomé B, Moreno-Arribas MV. Gut microbiota, an additional hallmark of human aging and neurodegeneration. Neuroscience. 2023;518:141–161. doi: 10.1016/j.neuroscience.2023.02.014

39. Rudzki L, Szulc A. “Immune gate” of psychopathology-the role of gut derived immune activation in major psychiatric disorders. Front Psychiatry. 2018;9:205. doi: 10.3389/fpsyt.2018.00205

40. Сиденкова АП, Мякотных ВС, Ворошилина ЕС, Мельник АА, Боровкова ТА, Прощенко ДА. Механизмы влияния кишечной микробиоты на процессы старения ЦНС и формирование когнитивных расстройств при болезни Альцгеймера. Психиатрия. 2022;20(3):98–111. doi: 10.30629/2618-6667-2022-20-3-98-111 Sidenkova AP, Myakotnykh VS, Voroshilina ES, Melnik AA, Borovkova TA, Proshchenko DA. Mechanisms of influence of intestinal microbiota on the processes of aging of the cns and the formation of cognitive disorders in Alzheimer’s disease. Psychiatry (Moscow) (Psikhiatriya). 2022;20(3):98–111. (In Russ.). doi: 10.30629/2618-6667-2022-20-3-98-111

41. Благонравова АС, Жиляева ТВ, Квашнина ДВ. Нарушения кишечной микробиоты при расстройствах аутистического спектра: новые горизонты в поиске патогенетических подходов к терапии. Ось кишечник–мозг в патогенезе расстройств аутистического спектра. Журнал микробиологии, эпидемиологии и иммунобиологии. 2021;98(2)221–230. doi: 10.36233/0372-9311-83 Blagonravova AS, Zhilyaeva TV, Kvashnina DV. Dysbiosis of intestinal microbiota in autism spectrum disorders: new horizons in search for pathogenetic approaches to therapy. Gut–brain axis in pathogenesis of autism spectrum disorders Journal of microbiology, epidemiology and immunobiology. 2021;98(2)221– 230. (In Russ.). doi: 10.36233/0372-9311-83

42. Катасонов АБ. Кишечный микробиом как терапевтическая мишень при лечении депрессии и тревоги. Журнал неврологии и психиатрии имени С.С. Корсакова. 2021;121(11):129–135. doi: 10.17116/jnevro2021121111129 Katasonov AB. Gut microbiome as a therapeutic target in the treatment of depression and anxiety. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova/S.S. Korsakov Journal of neurology and psychiatry. 2021;121(11):129–135. (In Russ.). doi: 10.17116/jnevro2021121111129

43. Nagpal J, Cryan JF. Microbiota–brain interactions: Moving toward mechanisms in model organisms. Neuron. 2021;109(24):3930–3953. doi: 10.1016/j.neuron.2021.09.036

44. Cerdó T, Ruíz A, Suárez A, Campoy C. Probiotic, prebiotic, and brain development. Nutrients. 2017;9(11):1247. doi: 10.3390/nu9111247

45. Luczynski P, McVey Neufeld KA, Oriach CS, Clarke G, Dinan TG, Cryan JF. Growing up in a bubble: using germ-free animals to assess the influence of the gut microbiota on brain and behavior. Int J Neuropsychopharmacol. 2016;12;19(8):pyw020. doi: 10.1093/ijnp/pyw020

46. Яковлев МЮ. Роль кишечной микрофлоры и недостаточность барьерной функции печени в развитии эндотоксинемии и воспаления. Казанский медицинский журнал. 1988;69(5):353–358. Yakovlev MYu. Rol’ kishechnoj mikroflory i nedostatochnost’ bar’ernoj funkcii pecheni v razvitii endotoksinemii i vospaleniya. Kazanskij medicinskij zhurnal. 1988;69(5):353–358. (In Russ.).

47. Аниховская ИА, Белоглазов ВА, Гордиенко АИ, Иванов ЮД, Кубышкин АВ, Маркелова ММ, Покусаева ДП, Яковлев МЮ. Краткая история изучения роли кишечного фактора в старении и/или индукции системного воспаления: достижения, проблемы, перспективы. Патогенез. 2019;17(1):4–17. doi: 10.25557/2310-0435.2019.01.4-17 Anikhovskaya IA, Beloglazov VA, Gordienko AI, Ivanov YuD, Kubyshkin AV, Markelova MM, Pokusayeva DP, Yakovlev MYu. A brief history of studying the role of intestinal factor in aging and/or induction of systemic inflammation: Achievements, challenges, and prospects. Patogenez/Pathogenesis. 2019;17(1):4–17. (In Russ.). doi: 10.25557/2310-0435.2019.01.4-17

48. Batista CRA, Gomes GF, Candelario-Jalil E, Fiebich BL, de Oliveira ACP. Lipopolysaccharide-induced neuroinflammation as a bridge to understand neurodegeneration. Int J Mol Sci. 2019;20(9):2293. doi: 10.3390/ijms20092293

49. Lajqi T, Braun M, Kranig SA, Frommhold D, Pöschl J, Hudalla H. LPS induces opposing memory-like inflammatory responses in mouse bone marrow neutrophils. Int J Mol Sci. 2021;22(18):9803. doi:10.3390/ijms22189803

50. Калашникова СА, Полякова ЛВ. Использование бактериального липополисахарида для моделирования патологических процессов в медико-биологических исследованиях (обзор литературы). Вестник новых медицинских технологий. 2017;24(2)209–219. doi: 10.12737/article_5947d50a4ddf68.91843258 Kalashnikova SA, Polyakova LV. The use of bacterial lipopolysaccharide for pathological processes modeling on biomedical research (literature review). Journal of new medical technologies. 2017;24(2)209–219. (In Russ.). doi: 10.12737/article_5947d50a4ddf68.91843258

51. Muhammad T, Ikram M, Ullah R, Rehman SU, Kim MO. Hesperetin, a citrus flavonoid, attenuates LPS-induced neuroinflammation, apoptosis and memory impairments by modulating TLR4/NF-κb signaling. Nutrients. 2019;11(3):648. doi: 0.3390/nu11030648

52. Зозуля СА, Отман ИН, Олейчик ИB, Аниховская ИА, Яковлев МЮ, Клюшник ТП. Сопряженность процессов системного воспаления и системной эндотоксинемии при эндогенных психозах. Сибирский вестник психиатрии и наркологии. 2020;3(108):17– 27. doi: 10.26617/1810-3111-2020-3(108)-17-27 Zozulya SA, Otman IN, Oleichik IV, Anikhovskaya IA, Yakovlev MYu, Klyushnik TP. Conjugacy between processes of systemic inflammation and systemic endotoxinemia in endogenous psychoses. Siberian Herald of Psychiatry and Addiction Psychiatry. 2020;3(108):17–27. (In Russ.). doi: 10.26617/1810-3111-2020-3(108)-17-27

53. Зозуля СА. Отман ИН, Юнилайнен ОА, Аниховская ИА, Клюшник ТП, Яковлев МЮ. Показатели маркеров системного воспаления и системной эндотоксинемии у пациентов с эндогенными психозами. Патогенез. 2020;18(1):34–41. doi: 10.25557/2310-0435.2020.01.34-41 Zozulya SA. Otman IN, Unilainen OA, Anikhovskaya IA, Klyushnik TP, Yakovlev MYu. Markers of systemic inflammation and systemic endotoxinemia in patients with acute endogenous psychoses. Patogenez/Pathogenesis. 2020;18(1):34–41. (In Russ.). doi: 10.25557/2310-0435.2020.01.34-41

54. Howes OD, McCutcheon R, Agid O, de Bartolomeis A, van Beveren NJ, Birnbaum ML, Bloomfield MA, Bressan RA, Buchanan RW, Carpenter WT, Castle DJ, Citrome L, Daskalakis ZJ, Davidson M, Drake RJ, Dursun S, Ebdrup BH, Elkis H, Falkai P, Fleischacker WW, Gadelha A, Gaughran F, Glenthøj BY, Graff-Guerrero A, Hallak JE, Honer WG, Kennedy J, Kinon BJ, Lawrie SM, Lee J, Leweke FM, MacCabe JH, McNabb CB, Meltzer H, Möller HJ, Nakajima S, Pantelis C, Reis Marques T, Remington G, Rossell SL, Russell BR, Siu CO, Suzuki T, Sommer IE, Taylor D, Thomas N, Üçok A, Umbricht D, Walters JT, Kane J, Correll CU. Treatment-Resistant Schizophrenia: Treatment Response and Resistance in Psychosis (TRRIP) Working Group Consensus Guidelines on Diagnosis and Terminology. Am J Psychiatry. 2017;174(3):216–229. doi: 10.1176/appi.ajp.2016.16050503

55. Anikhovskaia IA, Vyshegurov IaKh, Usov IA, Iakovlev MYu. Bifidobacteria as a means of prevention or treatment of endotoxin aggression in patients with chronic diseases during remission or exacerbation. Human Physiology. 2004:30(6):732–733. doi: 10.1023/B:HUMP.0000049597.09577.22

56. Chernikhova EA, Anikhovskaya IA, Gataullin YuK, Ivanov VB, Yakovlev MYu. Enterosorbtion as an approach to the elimination of chronic endotoxin aggression. Human Physiology. 2007;33(3):373–374. doi: 10.1134/s0362119707030164

57. Аниховская ИА, Кубатиев АА, Майский ИА, Маркелова ММ, Салахов ИМ, Яковлев МЮ. Направления поиска средств снижения концентрации эндотоксина в общей гемоциркуляции. Патогенез. 2014;12(4):25–30. Anikhovskaya IA, Kubatiev AA, Maisky IA, Markelova MM, Salakhov IM, Yakovlev MYu. The search directions of means for reduction of endotoxin concentration in the general hemocirculation. Patogenez/Pathogenesis. 2014;12(4):25–30. (In Russ.).

58. Gordienko AI, Khimich NV, Beloglazov VI, Yakovlev MYu. Polyreactive transformation of class g immunoglobulins as a vector for search of potential means for improving the activityof anti-endotoxin immunity. Human Physiology. 2020;46(5):554–559. doi: 10.1134/S0362119720040052

59. Белоглазов ВА, Яцков И, Кумельский ЕД, Половинкина ВВ. Метаболическая эндотоксинемия: возможные причины и последствия. Ожирение и метаболизм. 2021;18(3):320–326. doi: 10.14341/omet12750 Beloglazov VA, Yatskov IA, Kumelsky ED, Polovinkina VV. Metabolic endotoxemia: possible causes and consequences. Obesity and metabolism. 2021;18(3):320–326. (In Russ.). doi: 10.14341/omet12750


Review

For citations:


Zozulya S.A., Yakovlev M.Yu., Klyushnik T.P. Gut Microbiota and (Neuro)Inflammation: Involvement of Endotoxin in the Pathogenesis of Endogenous Psychoses. Psychiatry (Moscow) (Psikhiatriya). 2023;21(5):86-96. (In Russ.) https://doi.org/10.30629/2618-6667-2023-21-5-86-96

Views: 700


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)