Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Oxidative Stress in Schizophrenia: Relation to Neurochemical Pathogenetic Hypotheses

https://doi.org/10.30629/2618-6667-2023-21-6-85-99

Abstract

   Background: heterogeneity of schizophrenia is reflected in the variety of clinical manifestations and biological disorders, on the basis of which several neurochemical hypotheses are formulated for schizophrenia pathogenesis. Review of the current hypotheses of schizophrenia pathogenesis shows that oxidative stress is not the main cause of the disease development, but affects its course and contributes to the deterioration of the patient’s condition.

   Objective: analysis of the relationships between redox imbalance and oxidative stress and the development of pathological processes in schizophrenia within the framework of neurochemical hypotheses of the disease pathogenesis.

   Material and methods: a search was made for sources in the Medline/PubMed databases, Scopus and RSCI using keyword combinations “oxidative stress”, “oxidation-reduction imbalance”, “schizophrenia”, “hypotheses of schizophrenia pathogenesis”, “antioxidants”, “neurotransmitters”, “glutathione”, “neuroinflammation”.

   Conclusion: data from numerous studies of the brain of patients with schizophrenia, their blood plasma, serum, and blood cells as well as the study of animal models of schizophrenia indicate the presence of redox imbalance and oxidative stress in this disease. Taken together, these data indicate that genetic and environmental factors that affect the manifestation of various pathological mechanisms in schizophrenia (disturbances in neurotransmitter systems, hypofunction of N-methyl-D-aspartate receptors, neuroinflammation, impaired signaling protein phosphorylation pathways) lead to the oxidative stress, enhancing the initial pathological changes, as a result of which synchronization processes and intercellular communications in the brain become disrupted. Medicines with antioxidant and anti-inflammatory properties, compounds for correcting mitochondrial dysfunction, and NMDAR-mediated signaling modulators can be used as drugs to reduce the harmful effects of oxidative stress. The efficacy of these medicines may vary in different patients, so the development of biomarker systems aimed at identifying individuals who are more likely to respond to a particular drug is of great importance.

About the Authors

G. Sh. Burbaeva
FSBSI “Mental Health Research Centre”
Russian Federation

Gulnur Sh. Burbaeva, Dr. of Sci. (Biol.), Professor, Head of the Laboratory

Laboratory of Neurochemistry

Moscow



T. A. Prokhorova
FSBSI “Mental Health Research Centre”
Russian Federation

Tatyana A. Prokhorova, Researcher

Laboratory of Neurochemistry

Moscow



O. K. Savushkina
FSBSI “Mental Health Research Centre”
Russian Federation

Olga K. Savushkina, Cand. of Sci. (Biol.), Leading Researcher

Laboratory of Neurochemistry

Moscow



E. B. Tereshkina
FSBSI “Mental Health Research Centre”
Russian Federation

Elena B. Tereshkina, Cand. of Sci. (Biol.), Senior Researcher

Laboratory of Neurochemistry

Moscow



E. A. Vorobyeva
FSBSI “Mental Health Research Centre”
Russian Federation

Elena A. Vorobyeva, Cand. of Sci. (Biol.), Researcher

Laboratory of Neurochemistry

Moscow



I. S. Boksha
FSBSI “Mental Health Research Centre”
Russian Federation

Irina S. Boksha, Dr. of Sci. (Biol.), Chief Scientific Researcher

Laboratory of Neurochemistry

Moscow



References

1. Pizzino G, Irrera N, Cucinotta M, Pallio G, Mannino F, Arcoraci V, Squadrito F, Altavilla D, Bitto A. Oxidative Stress: Harms and Benefits for Human Health. Oxid Med Cell Longev. 2017;2017:8416763. doi: 10.1155/2017/8416763

2. Tan BL, Norhaizan ME, Liew W-P-P, Sulaiman Rahman. H. Antioxidant and oxidative stress: a mutual interplay in age-related diseases. Front Pharm. 2018;9:1162. doi: 10.3389/fphar.2018.01162

3. Sato A, Okada M, Shibuya K, Watanabe E, Seino S, Narita Y, Shibui S, Kayama T, Kitanaka C. Pivotal role for ROS activation of p38 MAPK in the control of differentiation and tumor-initiating capacity of glioma-initiating cells. Stem Cell Res. 2014;12(1):119–131. doi: 10.1016/j.scr.2013.09.012

4. Bošković M, Vovk T, Kores Plesničar B, Grabnar I. Oxidative stress in schizophrenia. Curr Neuropharmacol. 2011;9(2):301–312. doi: 10.2174/157015911795596595

5. Yao JK, Keshavan MS. Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2011;15(7):2011–2035. doi: 10.1089/ars.2010.3603

6. Mirończuk-Chodakowska I, Witkowska AM, Zujko ME. Endogenous non-enzymatic antioxidants in the human body. Adv Med Sci. 2018;63(1):68–78. doi: 10.1016/j.advms.2017.05.005

7. Cobley JN, Fiorello ML, Bailey DM. 13 reasons why the brain is susceptible to oxidative stress. Redox Biol. 2018;15:490–503. doi: 10.1016/j.redox.2018.01.008

8. Dwivedi D, Megha K, Mishra R, Mandal PK. Glutathione in Brain: Overview of Its Conformations, Functions, Biochemical Characteristics, Quantitation and Potential Therapeutic Role in Brain Disorders. Neurochem Res. 2020;45(7):1461–1480. doi: 10.1007/s11064-020-03030-1

9. Baxter PS, Hardingham GE. Adaptive regulation of the brain’s antioxidant defences by neurons and astrocytes. Free Radic Biol Med. 2016;100:147–152. doi: 10.1016/j.freeradbiomed.2016.06.027

10. Spaas J, van Veggel L, Schepers M, Tiane A, van Horssen J, Wilson DM 3<sup>rd</sup> , Moya PR, Piccart E, Hellings N, Eijnde BO, Derave W, Schreiber R, Vanmierlo T. Oxidative stress and impaired oligodendrocyte precursor cell differentiation in neurological disorders. Cell Mol Life Sci. 2021;78(10):4615–4637. doi: 10.1007/s00018-021-03802-0

11. Vilhardt F, Haslund-Vinding J, Jaquet V, McBean G. Microglia antioxidant systems and redox signalling. Br J Pharmacol. 2017;174(12):1719–1732. doi: 10.1111/bph.13426

12. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int J Neuropsychopharmacol. 2011;14(1):123–130. doi: 10.1017/S1461145710000805

13. Zhang Y, Catts VS, Shannon Weickert C. Lower antioxidant capacity in the prefrontal cortex of individuals with schizophrenia. Aust N Z J Psychiatry. 2018;52(7):690–698. doi: 10.1177/0004867417728805

14. Prabakaran S, Swatton JE, Ryan MM, Huffaker SJ, Huang JT, Griffin JL, Wayland M, Freeman T, Dudbridge F, Lilley KS, Karp NA, Hester S, Tkachev D, Mimmack ML, Yolken RH, Webster MJ, Torrey EF, Bahn S. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol Psychiatry. 2004;9(7):684–697, 643. doi: 10.1038/sj.mp.4001511

15. Tayoshi S, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S, Iga J, Nakataki M, Ueno S, Harada M, Ohmori T. Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS). Schizophr Res. 2009;108(1–3):69–77. doi: 10.1016/j.schres.2008.11.014

16. Kumar J, Liddle EB, Fernandes CC, Palaniyappan L, Hall EL, Robson SE, Simmonite M, Fiesal J, Katshu MZ, Qureshi A, Skelton M, Christodoulou NG, Brookes MJ, Morris PG, Liddle PF. Glutathione and glutamate in schizophrenia: a 7T MRS study. Mol Psychiatry. 2020;25(4):873–882. doi: 10.1038/s41380-018-0104-7

17. Wang AM, Pradhan S, Coughlin JM, Trivedi A, DuBois SL, Crawford JL, Sedlak TW, Nucifora FC Jr, Nestadt G, Nucifora LG, Schretlen DJ, Sawa A, Barker PB. Assessing Brain Metabolism With 7-T Proton Magnetic Resonance Spectroscopy in Patients with First-Episode Psychosis. JAMA Psychiatry. 2019;76(3):314–323. doi: 10.1001/jamapsychiatry.2018.3637

18. Flatow J, Buckley P, Miller BJ. Meta-analysis of oxidative stress in schizophrenia. Biol Psychiatry. 2013;74(6):400–409. doi: 10.1016/j.biopsych.2013.03.018

19. Hoen WP, Lijmer JG, Duran M, Wanders RJ, van Beveren NJ, de Haan L. Red blood cell polyunsaturated fatty acids measured in red blood cells and schizophrenia: a meta-analysis. Psychiatry Res. 2013;207(1–2):1–12. doi: 10.1016/j.psychres.2012.09.041

20. Wang D, Zhai JX, Liu DW. Serum folate levels in schizophrenia: A meta-analysis. Psychiatry Res. 2016;235:83–89. doi: 10.1016/j.psychres.2015.11.045

21. Tomioka Y, Numata S, Kinoshita M, Umehara H, Watanabe SY, Nakataki M, Iwayama Y, Toyota T, Ikeda M, Yamamori H, Shimodera S, Tajima A, Hashimoto R, Iwata N, Yoshikawa T, Ohmori T. Decreased serum pyridoxal levels in schizophrenia: meta-analysis and Mendelian randomization analysis. J Psychiatry Neurosci. 2018;43(3):194–200. doi: 10.1503/jpn.170053

22. Tsugawa S, Noda Y, Tarumi R, Mimura Y, Yoshida K, Iwata Y, Elsalhy M, Kuromiya M, Kurose S, Masuda F, Morita S, Ogyu K, Plitman E, Wada M, Miyazaki T, Graff-Guerrero A, Mimura M, Nakajima S. Glutathione levels and activities of glutathione metabolism enzymes in patients with schizophrenia: A systematic review and meta-analysis. J Psychopharmacol. 2019;33(10):1199–1214. doi: 10.1177/0269881119845820

23. Fraguas D, Díaz-Caneja CM, Ayora M, Hernández-Álvarez F, Rodríguez-Quiroga A, Recio S, Leza JC, Arango C. Oxidative Stress and Inflammation in First-Episode Psychosis: A Systematic Review and Meta-analysis. Schizophr Bull. 2019;45(4):742–751. doi: 10.1093/schbul/sby125

24. Ermakov EA, Dmitrieva EM, Parshukova DA, Kazantseva DV, Vasilieva AR, Smirnova LP. Oxidative Stress-Related Mechanisms in Schizophrenia Pathogenesis and New Treatment Perspectives. Oxid Med Cell Longev. 2021;2021:8881770. doi: 10.1155/2021/8881770

25. Koga M, Serritella AV, Sawa A, Sedlak TW. Implications for reactive oxygen species in schizophrenia pathogenesis. Schizophr Res. 2016;176(1):52–71. doi: 10.1016/j.schres.2015.06.022

26. Boksha IS, Omel’chenko MA, Savushkina OK, Prokhorova TA, Tereshkina EB, Vorobyeva EA, Burbaeva GS. Links of platelet glutamate and glutathione metabolism with attenuated positive and negative symptoms in depressed patients at clinical high risk for psychosis. Eur Arch Psychiatry Clin Neurosci. 2023;273(1):157–168. doi: 10.1007/s00406-022-01396-7

27. Tereshkina EB, Savushkina OK, Boksha IS, Prokhorova TA, Vorobyeva EA, Omel’chenko MA, Pomytkin AN, Kaleda VG, Burbaeva GSh. Glutathione reductase and glutathione-S-transferase in blood cells in schizophrenia and schizophrenia spectrum disorders. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2019;119(2):61–65. (In Russ.). doi: 10.17116/jnevro201911902161

28. Savushkina OK, Boksha IS, Tereshkina EB, Prokhorova TA, Sheshenin VS, Pochueva VV, Vorobyeva EA, Burbaeva GSh. Platelet Enzymes of Glutathione Metabolism in Patients with Late-Onset Schizophrenic Spectrum Disorders. Psychiatry (Moscow) (Psikhiatriya). 2020;18(4):41–50. (In Russ.). doi: 10.30629/2618-6667-2020-18-4-41-50

29. Solberg DK, Refsum H, Andreassen OA, Bentsen H. A five-year follow-up study of antioxidants, oxidative stress and polyunsaturated fatty acids in schizophrenia. Acta Neuropsychiatr. 2019;31(4):202–212. doi: 10.1017/neu.2019.14

30. Kim SY, Cohen BM, Chen X, Lukas SE, Shinn AK, Yuksel AC, Li T, Du F, Öngür D. Redox Dysregulation in Schizophrenia Revealed by in vivo NAD+/NADH Measurement. Schizophr Bull. 2017;43(1):197–204. doi: 10.1093/schbul/sbw129

31. Korge P, Calmettes G, Weiss JN. Increased reactive oxygen species production during reductive stress: The roles of mitochondrial glutathione and thioredoxin reductases. Biochim Biophys Acta. 2015;1847(6–7):514–525. doi: 10.1016/j.bbabio.2015.02.012

32. Xin L, Mekle R, Fournier M, Baumann PS, Ferrari C, Alameda L, Jenni R, Lu H, Schaller B, Cuenod M, Conus P, Gruetter R, Do KQ. Genetic Polymorphism Associated Prefrontal Glutathione and Its Coupling with Brain Glutamate and Peripheral Redox Status in Early Psychosis. Schizophr Bull. 2016;42(5):1185–1196. doi: 10.1093/schbul/sbw038

33. Faizi M, Salimi A, Rasoulzadeh M, Naserzadeh P, Pourahmad J. Schizophrenia induces oxidative stress and cytochrome C release in isolated rat brain mitochondria: a possible pathway for induction of apoptosis and neurodegeneration. Iran J Pharm Res. 2014;13(Suppl):93–100.

34. Ozyurt H, Ozyurt B, Sarsilmaz M, Kus I, Songur A, Akyol O. Potential role of some oxidant/antioxidant status parameters in prefrontal cortex of rat brain in an experimental psychosis model and the protective effects of melatonin. Eur Rev Med Pharmacol Sci. 2014;18(15):2137–2144.

35. Kulak A, Cuenod M, Do KQ. Behavioral phenotyping of glutathione-deficient mice: relevance to schizophrenia and bipolar disorder. Behav Brain Res. 2012;226(2):563–570. doi: 10.1016/j.bbr.2011.10.020

36. Iguchi Y, Kosugi S, Nishikawa H, Lin Z, Minabe Y, Toda S. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions. PLoS One. 2014;9(12):e114024. doi: 10.1371/journal.pone.0114024

37. Zhang XY, Zhou DF, Qi LY, Chen S, Cao LY, Chen DC, Xiu MH, Wang F, Wu GY, Lu L, Kosten TA, Kosten TR. Superoxide dismutase and cytokines in chronic patients with schizophrenia: association with psychopathology and response to antipsychotics. Psychopharmacology (Berl). 2009;204(1):177–184. doi: 10.1007/s00213-008-1447-6

38. Wu Z, Zhang XY, Wang H, Tang W, Xia Y, Zhang F, Liu J, Fu Y, Hu J, Chen Y, Liu L, Chen DC, Xiu MH, Kosten TR, He J. Elevated plasma superoxide dismutase in first-episode and drug naive patients with schizophrenia: inverse association with positive symptoms. Prog Neuropsychopharmacol Biol Psychiatry. 2012;36(1):34–38. doi: 10.1016/j.pnpbp.2011.08.018

39. Bai ZL, Li XS, Chen GY, Du Y, Wei ZX, Chen X, Zheng GE, Deng W, Cheng Y. Serum Oxidative Stress Marker Levels in Unmedicated and Medicated Patients with Schizophrenia. J Mol Neurosci. 2018;66(3):428–436. doi: 10.1007/s12031-018-1165-4

40. Altuntas I, Aksoy H, Coskun I, Cayköylü A, Akçay F. Erythrocyte superoxide dismutase and glutathione peroxidase activities, and malondialdehyde and reduced glutathione levels in schizophrenic patients. Clin Chem Lab Med. 2000;38(12):1277–12781. doi: 10.1515/CCLM.2000.201

41. Tsai MC, Liou CW, Lin TK, Lin IM, Huang TL. Changes in oxidative stress markers in patients with schizophrenia: the effect of antipsychotic drugs. Psychiatry Res. 2013;209(3):284–290. doi: 10.1016/j.psychres.2013.01.023

42. Wang DM, Chen DC, Wang L, Zhang XY. Sex differences in the association between symptoms and superoxide dismutase in patients with never-treated first-episode schizophrenia. World J Biol Psychiatry. 2021;22(5):325–334. doi: 10.1080/15622975.2020.1805510

43. Chien YL, Hwu HG, Hwang TJ, Hsieh MH, Liu CC, Lin-Shiau SY, Liu CM. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog Neuropsychopharmacol Biol Psychiatry. 2020;99:109868. doi: 10.1016/j.pnpbp.2020.109868

44. Dudzińska E, Szymona K, Bogucki J, Koch W, Cholewińska E, Sitarz R, Ognik K. Increased Markers of Oxidative Stress and Positive Correlation Low-Grade Inflammation with Positive Symptoms in the First Episode of Schizophrenia in Drug-Naïve Patients. J Clin Med. 2022;11(9):2551. doi: 10.3390/jcm11092551

45. Sumiyoshi T, Matsui M, Itoh H, Higuchi Y, Arai H, Takamiya C, Kurachi M. Essential polyunsaturated fatty acids and social cognition in schizophrenia. Psychiatry Res. 2008;157(1–3):87–93. doi: 10.1016/j.psychres.2006.05.025

46. Bentsen H, Solberg DK, Refsum H, Bøhmer T. Clinical and biochemical validation of two endophenotypes of schizophrenia defined by levels of polyunsaturated fatty acids in red blood cells. Prostaglandins Leukot Essent Fatty Acids. 2012;87(1):35–41. doi: 10.1016/j.plefa.2012.05.005

47. Matsuzawa D, Obata T, Shirayama Y, Nonaka H, Kanazawa Y, Yoshitome E, Takanashi J, Matsuda T, Shimizu E, Ikehira H, Iyo M, Hashimoto K. Negative correlation between brain glutathione level and negative symptoms in schizophrenia: a 3T 1H-MRS study. PLoS One. 2008;3(4):e1944. doi: 10.1371/journal.pone.0001944

48. Maes M, Sirivichayakul S, Matsumoto AK, Michelin AP, de Oliveira Semeão L, de Lima Pedrão JV, Moreira EG, Barbosa DS, Carvalho AF, Solmi M, Kanchanatawan B. Lowered Antioxidant Defenses and Increased Oxidative Toxicity Are Hallmarks of Deficit Schizophrenia: a Nomothetic Network Psychiatry Approach. Mol Neurobiol. 2020;57(11):4578–4597. doi: 10.1007/s12035-020-02047-5

49. Howes O, McCutcheon R, Stone J. Glutamate and dopamine in schizophrenia: an update for the 21<sup>st</sup> century. J Psychopharmacol. 2015;29(2):97–115. doi: 10.1177/0269881114563634

50. Potanin SS, Morozova MA. Oxidative stress in schizophrenia as a promising target for psychopharmacotherapy. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021;121(9):131–138. (In Russ.). doi: 10.17116/jnevro2021121091131

51. Berk M, Copolov D, Dean O, Lu K, Jeavons S, Schapkaitz I, Anderson-Hunt M, Judd F, Katz F, Katz P, Ording-Jespersen S, Little J, Conus P, Cuenod M, Do KQ, Bush AI. N-acetyl cysteine as a glutathione precursor for schizophrenia — a double-blind, randomized, placebo-controlled trial. Biol Psychiatry. 2008;64(5):361–368. doi: 10.1016/j.biopsych.2008.03.004

52. Pyatoykina AS, Zhilyaeva TV, Semennov IV, Mshanov GA, Blagonravova AS, Mazo GE. The double-blind randomized placebo-controlled trial of N-acetylcysteine use in schizophrenia: preliminary results. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2020;120(9):66–71. (In Russ.). doi: 10.17116/jnevro202012009166

53. Farokhnia M, Azarkolah A, Adinehfar F, Khodaie-Ardakani MR, Hosseini SM, Yekehtaz H, Tabrizi M, Rezaei F, Salehi B, Sadeghi SM, Moghadam M, Gharibi F, Mirshafiee O, Akhondzadeh S. N-acetylcysteine as an adjunct to risperidone for treatment of negative symptoms in patients with chronic schizophrenia: a randomized, double-blind, placebo-controlled study. Clin Neuropharmacol. 2013;36(6):185–192. doi: 10.1097/WNF.0000000000000001

54. Klomparens EA, Ding Y. The neuroprotective mechanisms and effects of sulforaphane. Brain Circ. 2019;5(2):74–83. doi: 10.4103/bc.bc_7_19

55. Sedlak TW, Nucifora LG, Koga M, Shaffer LS, Higgs C, Tanaka T, Wang AM, Coughlin JM, Barker PB, Fahey JW, Sawa A. Sulforaphane Augments Glutathione and Influences Brain Metabolites in Human Subjects: A Clinical Pilot Study. Mol Neuropsychiatry. 2018;3(4):214–222. doi: 10.1159/000487639

56. Hashimoto K. Recent Advances in the Early Intervention in Schizophrenia: Future Direction from Preclinical Findings. Curr Psychiatry Rep. 2019;21(8):75. doi: 10.1007/s11920-019-1063-7

57. Shiina A, Kanahara N, Sasaki T, Oda Y, Hashimoto T, Hasegawa T, Yoshida T, Iyo M, Hashimoto K. An Open Study of Sulforaphane-rich Broccoli Sprout Extract in Patients with Schizophrenia. Clin Psychopharmacol Neurosci. 2015;13(1):62–67. doi: 10.9758/cpn.2015.13.1.62

58. Dickerson F, Origoni A, Katsafanas E, Squire A, Newman T, Fahey J, Xiao JC, Stallings C, Goga J, Khushalani S, Yolken R. Randomized controlled trial of an adjunctive sulforaphane nutraceutical in schizophrenia. Schizophr Res. 2021;231:142–144. doi: 10.1016/j.schres.2021.03.018

59. Mitra S, Natarajan R, Ziedonis D, Fan X. Antioxidant and anti-inflammatory nutrient status, supplementation, and mechanisms in patients with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry. 2017;78:1–11. doi: 10.1016/j.pnpbp.2017.05.005

60. Brown HE, Roffman JL. Vitamin supplementation in the treatment of schizophrenia. CNS Drugs. 2014;28(7):611–622. doi: 10.1007/s40263-014-0172-4

61. Emsley R, Myburgh C, Oosthuizen P, van Rensburg SJ. Randomized, placebo-controlled study of ethyl-eicosapentaenoic acid as supplemental treatment in schizophrenia. Am J Psychiatry. 2002;159(9):1596–1598. doi: 10.1176/appi.ajp.159.9.1596

62. Pawełczyk T, Grancow-Grabka M, Kotlicka-Antczak M, Trafalska E, Pawełczyk A. A randomized controlled study of the efficacy of six-month supplementation with concentrated fish oil rich in omega-3 polyunsaturated fatty acids in first episode schizophrenia. J Psychiatr Res. 2016;73:34–44. doi: 10.1016/j.jpsychires.2015.11.013

63. Fenton WS, Dickerson F, Boronow J, Hibbeln JR, Knable M. A placebo-controlled trial of omega-3 fatty acid (ethyl eicosapentaenoic acid) supplementation for residual symptoms and cognitive impairment in schizophrenia. Am J Psychiatry. 2001;158(12):2071–2074. doi: 10.1176/appi.ajp.158.12.2071

64. McGorry PD, Nelson B, Markulev C, Yuen HP, Schäfer MR, Mossaheb N, Schlögelhofer M, Smesny S, Hickie IB, Berger GE, Chen EY, de Haan L, Nieman DH, Nordentoft M, Riecher-Rössle son A, Yung AR, Amminger GP. Effect of ω-3 Polyun r A, Verma S, Thompsaturated Fatty Acids in Young People at Ultrahigh Risk for Psychotic Disorders: The NEURAPRO Randomized Clinical Trial. JAMA Psychiatry. 2017;74(1):19–27. doi: 10.1001/jamapsychiatry.2016.2902

65. Bentsen H, Osnes K, Refsum H, Solberg DK, Bøhmer T. A randomized placebo-controlled trial of an omega-3 fatty acid and vitamins E+C in schizophrenia. Transl Psychiatry. 2013;3(12):e335. doi: 10.1038/tp.2013.110

66. Susai SR, Sabherwal S, Mongan D, Föcking M, Cotter DR. Omega-3 fatty acid in ultra-high-risk psychosis: A systematic review based on functional outcome. Early Interv Psychiatry. 2022;16(1):3–16. doi: 10.1111/eip.13133

67. Chowdari KV, Bamne MN, Nimgaonkar VL. Genetic association studies of antioxidant pathway genes and schizophrenia. Antioxid Redox Signal. 2011;15(7):2037–2045. doi: 10.1089/ars.2010.3508

68. Carlsson A, Lindqvist M, Magnusson T. 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature. 1957;180(4596):1200. doi: 10.1038/1801200a0

69. Toda M, Abi-Dargham A. Dopamine hypothesis of schizophrenia: making sense of it all. Curr Psychiatry Rep. 2007;9(4):329–336. doi: 10.1007/s11920-007-0041-7

70. Fervaha G, Takeuchi H, Lee J, Foussias G, Fletcher PJ, Agid O, Remington G. Antipsychotics and amotivation. Neuropsychopharmacology. 2015;40(6):1539–1548. doi: 10.1038/npp.2015.3

71. Artaloytia JF, Arango C, Lahti A, Sanz J, Pascual A, Cubero P, Prieto D, Palomo T. Negative signs and symptoms secondary to antipsychotics: a double-blind, randomized trial of a single dose of placebo, haloperidol, and risperidone in healthy volunteers. Am J Psychiatry. 2006;163(3):488–493. doi: 10.1176/appi.ajp.163.3.488

72. Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34. doi: 10.1186/1478-811X-11-34

73. Grima G, Benz B, Parpura V, Cuénod M, Do KQ. Dopamine-induced oxidative stress in neurons with glutathione deficit: implication for schizophrenia. Schizophr Res. 2003;62(3):213–224. doi: 10.1016/s0920-9964(02)00405-x

74. Xu H, Yang F. The interplay of dopamine metabolism abnormalities and mitochondrial defects in the pathogenesis of schizophrenia. Transl Psychiatry. 2022;12(1):464. doi: 10.1038/s41398-022-02233-0

75. Kim JS, Kornhuber HH, Schmid-Burgk W, Holzmüller B. Low cerebrospinal fluid glutamate in schizophrenic patients and a new hypothesis on schizophrenia. Neurosci Lett. 1980;20(3):379–382. doi: 10.1016/0304-3940(80)90178-0

76. Javitt DC, Zukin SR. Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry. 1991;148(10):1301–1308. doi: 10.1176/ajp.148.10.1301

77. Krystal JH, D’Souza DC, Mathalon D, Perry E, Belger A, Hoffman R. NMDA receptor antagonist effects, cortical glutamatergic function, and schizophrenia: toward a paradigm shift in medication development. Psychopharmacology (Berl). 2003;169(3–4):215–233. doi: 10.1007/s00213-003-1582-z

78. Schizophrenia Working Group of the Psychiatric Genomics Consortium. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511(7510):421–427. doi: 10.1038/nature13595

79. Bustillo JR, Patel V, Jones T, Jung R, Payaknait N, Qualls C, Canive JM, Liu J, Perrone-Bizzozero NI, Calhoun VD, Turner JA, Gasparovic C. Risk-Conferring Glutamatergic Genes and Brain Glutamate Plus Glutamine in Schizophrenia. Front Psychiatry. 2017;8:79. doi: 10.3389/fpsyt.2017.00079

80. Sokolov BP. Expression of NMDAR1, GluR1, GluR7, and KA1 glutamate receptor mRNAs is decreased in frontal cortex of “neuroleptic-free” schizophrenics: evidence on reversible up-regulation by typical neuroleptics. J Neurochem. 1998;71(6):2454–2464. doi: 10.1046/j.1471-4159.1998.71062454.x

81. Dalmau J, Gleichman AJ, Hughes EG, Rossi JE, Peng X, Lai M, Dessain SK, Rosenfeld MR, Balice-Gordon R, Lynch DR. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol. 2008;7(12):1091–1098. doi: 10.1016/S1474-4422(08)70224-2

82. Baxter PS, Bell KF, Hasel P, Kaindl AM, Fricker M, Thomson D, Cregan SP, Gillingwater TH, Hardingham GE. Synaptic NMDA receptor activity is coupled to the transcriptional control of the glutathione system. Nat Commun. 2015;6:6761. doi: 10.1038/ncomms7761

83. Papadia S, Soriano FX, Léveillé F, Martel MA, Dakin KA, Hansen HH, Kaindl A, Sifringer M, Fowler J, Stefovska V, McKenzie G, Craigon M, Corriveau R, Ghazal P, Horsburgh K, Yankner BA, Wyllie DJ, Ikonomidou C, Hardingham GE. Synaptic NMDA receptor activity boosts intrinsic antioxidant defenses. Nat Neurosci. 2008;11(4):476–487. doi: 10.1038/nn2071

84. Lipton SA, Choi YB, Takahashi H, Zhang D, Li W, Godzik A, Bankston LA. Cysteine regulation of protein function as exemplified by NMDA-receptor modulation. Trends Neurosci. 2002;25(9):474–480. doi: 10.1016/s0166-2236(02)02245-2

85. Behrens MM, Ali SS, Dao DN, Lucero J, Shekhtman G, Quick KL, Dugan LL. Ketamine-induced loss of phenotype of fast-spiking interneurons is mediated by NADPH-oxidase. Science. 2007;318(5856):1645–1657. doi: 10.1126/science.1148045

86. Hardingham GE, Do KQ. Linking early-life NMDAR hypofunction and oxidative stress in schizophrenia pathogenesis. Nat Rev Neurosci. 2016;17(2):125–134. doi: 10.1038/nrn.2015.19

87. Gasiorowska A, Wydrych M, Drapich P, Zadrozny M, Steczkowska M, Niewiadomski W, Niewiadomska G. The Biology and Pathobiology of Glutamatergic, Cholinergic, and Dopaminergic Signaling in the Aging Brain. Front Aging Neurosci. 2021;13:654931. doi: 10.3389/fnagi.2021.654931

88. Müller N. A Brief History of Immunological Research into Psychosis and Pathways for Immune Influence of the Brain. Curr Top Behav Neurosci. 2020;44:1–8. doi: 10.1007/7854_2018_82

89. Upthegrove R, Khandaker GM. Cytokines, Oxidative Stress and Cellular Markers of Inflammation in Schizophrenia. Curr Top Behav Neurosci. 2020;44:49–66. doi: 10.1007/7854_2018_88

90. Kliushnik TP, Zozulya SA, Androsova LV, Sarmanova ZV, Otman IN, Dupin AM, Panteleeva GP, Oleichik IV, Abramova LI, Stolyarov SA, Shypilova ES, Borisova OA. Immunological monitoring of endogenous attack-like psychoses. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2014;114(2):37–42. (In Russ.).

91. Khoury R, Nasrallah HA. Inflammatory biomarkers in individuals at clinical high risk for psychosis (CHR-P): State or trait? Schizophr Res. 2018;199:31–38. doi: 10.1016/j.schres.2018.04.017

92. Zozulya SA, Omelchenko MA, Sarmanova ZV, Migalina VV, Kaleda VG, Klyushnik TP. Features of Inflammatory Response in Juvenile Depression with Attenuated Symptoms of Schizophrenic Spectrum. Psychiatry (Moscow) (Psikhiatriya). 2021;19(2):29–38. doi: 10.30629/2618-6667-2021-19-2-29-38

93. Michalczyk A, Tyburski E, Podwalski P, Waszczuk K, Rudkowski K, Kucharska-Mazur J, Mak M, Rek-Owodziń K, Plichta P, Bielecki M, Andrusewicz W, Cecerska-Heryć E, Samochowiec A, Misiak B, Sagan L, Samochowiec J. Serum Inrflammatory Markers and Integrity of the Superior Longitudinal Fasciculus and the Inferior Longitudinal Fasciculus in Schizophrenia, from Prodromal Stages to Chronic Psychosis — A Cross-Sectional Study. J Clin Med. 2023;12(2):683. doi: 10.3390/jcm12020683

94. Pedraz-Petrozzi B, Elyamany O, Rummel C, Mulert C. Effects of inflammation on the kynurenine pathway in schizophrenia — a systematic review. J Neuroinflammation. 2020;17(1):56. doi: 10.1186/s12974-020-1721-z

95. International Schizophrenia Consortium; Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. doi: 10.1038/nature08185

96. Birnbaum R, Weinberger DR. A Genetics Perspective on the Role of the (Neuro)Immune System in Schizophrenia. Schizophr Res. 2020;217:105–113. doi: 10.1016/j.schres.2019.02.005

97. Bordt EA, Polster BM. NADPH oxidase- and mitochondria-derived reactive oxygen species in proinflammatory microglial activation: a bipartisan affair? Free Radic Biol Med. 2014;76:34–46. doi: 10.1016/j.freeradbiomed.2014.07.033

98. Najjar S, Pahlajani S, De Sanctis V, Stern JNH, Najjar A, Chong D. Neurovascular Unit Dysfunction and Blood-Brain Barrier Hyperpermeability Contribute to Schizophrenia Neurobiology: A Theoretical Integration of Clinical and Experimental Evidence. Front Psychiatry. 2017;8:83. doi: 10.3389/fpsyt.2017.00083

99. Lanté F, Meunier J, Guiramand J, De Jesus Ferreira MC, Cambonie G, Aimar R, Cohen-Solal C, Maurice T, Vignes M, Barbanel G. Late N-acetylcysteine treatment prevents the deficits induced in the offspring of dams exposed to an immune stress during gestation. Hippocampus. 2008;18(6):602–609. doi: 10.1002/hipo.20421

100. Ribeiro BM, do Carmo MR, Freire RS, Rocha NF, Borella VC, de Menezes AT, Monte AS, Gomes PX, de Sousa FC, Vale ML, de Lucena DF, Gama CS, Macêdo D. Evidences for a progressive microglial activation and increase in iNOS expression in rats submitted to a neurodevelopmental model of schizophrenia: reversal by clozapine. Schizophr Res. 2013;151(1–3):12–19. doi: 10.1016/j.schres.2013.10.040

101. Uzbekov MG. Endogenous intoxication and its role in pathogenetic mechanisms of mental disorders. Social and Clinical Psychiatry. 2019;29(4):14–20. (In Russ.).

102. Gururajan A, van den Buuse M. Is the mTOR-signalling cascade disrupted in Schizophrenia? J Neurochem. 2014;129(3):377–387. doi: 10.1111/jnc.12622

103. Maas DA, Vallès A, Martens GJM. Oxidative stress, prefrontal cortex hypomyelination and cognitive symptoms in schizophrenia. Transl Psychiatry. 2017;7(7):e1171. doi: 10.1038/tp.2017.138

104. Jana M, Pahan K. Down-regulation of Myelin Gene Expression in Human Oligodendrocytes by Nitric Oxide: Implications for Demyelination in Multiple Sclerosis. J Clin Cell Immunol. 2013;4:10.4172/2155-9899.1000157. URL: https://www.longdom.org/open-access/downregulation-of-myelin-gene-expression-in-human-oligodendrocytes-by-nitric-oxide-implications-for-demyelination-in-mul-48977.html

105. Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rakhmanova VI, Orlovskaya DD. Ultrastructural changes of myelinated fibers in the brain in continuous and attack-like paranoid schizophrenia. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2017;117(2):104–109. (In Russ.). doi: 10.17116/jnevro201711721104-109


Review

For citations:


Burbaeva G.Sh., Prokhorova T.A., Savushkina O.K., Tereshkina E.B., Vorobyeva E.A., Boksha I.S. Oxidative Stress in Schizophrenia: Relation to Neurochemical Pathogenetic Hypotheses. Psychiatry (Moscow) (Psikhiatriya). 2023;21(6):85-99. (In Russ.) https://doi.org/10.30629/2618-6667-2023-21-6-85-99

Views: 622


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)