Preview

ПСИХИАТРИЯ

Расширенный поиск

Нарушения нейропсихического развития, обусловленные генетическими дефектами структуры рецепторов глутаматергической системы

https://doi.org/10.30629/2618-6667-2024-22-1-90-98

Аннотация

Обоснование: в последние десятилетия происходит активное изучение роли дисфункции глутаматных рецепторов в генезе психических расстройств, неврологической и аутоиммунной патологии, онкологических и иных заболеваний. Ведется разработка лекарственных препаратов, воздействующих на глутаматергические рецепторы.

Цель: изложить современные представления о вторичных расстройствах нейропсихического развития (согласно кодификации Международной классификации болезней 11-го пересмотра, блок L1-6E60), ассоциированных с генетически обусловленными нарушениями структуры глутаматергических рецепторов.

Материал и методы: был проведен поиск и анализ описаний случаев нарушенного нейропсихического развития, ассоциированных с генетическими обусловленными дефектами субъединиц ионотропных и метаботропных глутаматных рецепторов в научных библиотеках MEDLINE/Gene database, MEDLINE/PubMed, Online Mendelian Inheritance in Man (OMIM), UniProt, ClinGen, eLibrary.

Заключение: генетически обусловленные нарушения большинства известных ионотропных (GluA, GluN, GluK, GluD) и ряда метаботропных глутаматных рецепторов (mGluR1, 5, 7) ассоциированы с тяжелыми вариантами расстройств нейропсихического развития с манифестом в младенческом периоде и раннем детстве. Представленные разнообразные симптомы определяют транснозологический подход к диагностике и ведению пациентов, требующий привлечения специалистов в области педиатрии, детской психиатрии, неврологии, генетики и медико-социальной реабилитации.

Об авторах

А. В. Абрамов
ГБУЗ «Научно-практический центр психического здоровья детей и подростков им. Г.Е. Сухаревой Департамента здравоохранения г. Москвы»; ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Министерства здравоохранения Российской Федерации
Россия

Александр Викторович Абрамов, младший научный сотрудник, научно-организационный отдел, преподаватель учебно-методического отдела, врач-психиатр детский

Москва



Е. В. Макушкин
ФГАУ «Национальный медицинский исследовательский центр здоровья детей» Министерства здравоохранения Российской Федерации; ФГБНУ «Научный центр психического здоровья»
Россия

Евгений Вадимович Макушкин, доктор медицинских наук, профессор, главный внештатный детский специалист–психиатр; начальник научно-медицинского
центра детской психиатрии; главный научный сотрудник

Москва



Список литературы

1. International Classification of Diseases, Eleventh Revision (ICD-11). Geneva: World Health Organization; 2022. License: CC BY-ND 3.0 IGO

2. Manent JB, Jorquera I, Ben-Ari Y, Aniksztejn L, Represa A. Glutamate acting on AMPA but not NMDA receptors modulates the migration of hippocampal interneurons. J Neurosci. 2006;26(22):5901–5909. doi: 10.1523/JNEUROSCI.1033-06.2006

3. Ambrogini P, Minelli A, Lattanzi D, Ciuffoli S, Fanelli M, Cuppini R. Synaptically-silent immature neurons show gaba and glutamate receptor-mediated currents in adult rat dentate gyrus. Arch Ital Biol. 2006;144(2):115–126. PMID: 16642790.

4. Huang LC, Barclay M, Lee K, Peter S, Housley GD, Thorne PR, Montgomery JM. Synaptic profiles during neurite extension, refinement and retraction in the developing cochlea. Neural Dev. 2012; 7(1):38. doi: 10.1186/1749-8104-7-38

5. Xu W, Löwel S, Schlüter OM. Silent Synapse-Based Mechanisms of Critical Period Plasticity. Front Cell Neurosci. 2020;14:213. doi: 10.3389/fncel.2020.00213 PMID: 32765222

6. Hanson E, Armbruster M, Lau LA, Sommer ME, Klaft ZJ, Swanger SA, Traynelis SF, Moss SJ, Noubary F, Chadchankar J, Dulla CG. Tonic Activation of GluN2C/GluN2D-Containing NMDA Receptors by Ambient Glutamate Facilitates Cortical Interneuron Maturation. J Neurosci. 2019;39(19):3611–3626. doi: 10.1523/JNEUROSCI.1392-18.2019 Epub 2019 Mar 7. PMID: 30846615; PMCID: PMC6510335.

7. Jack A, Hamad MIK, Gonda S, Gralla S, Pahl S, Hollmann M, Wahle P. Development of cortical pyramidal cell and interneuronal dendrites: a role for kainate receptor subunits and NETO1. Mol Neurobiol. 2019;56(7):4960–4979. doi: 10.1007/s12035-018-1414-0 PMID: 30421168.

8. Lauri SE, Segerstråle M, Vesikansa A, Maingret F, Mulle C, Collingridge GL, Isaac JT, Taira T. Endogenous activation of kainate receptors regulates glutamate release and network activity in the developing hippocampus. J Neurosci. 2005;25(18):4473–4484. doi: https://doi.org/10.1523/JNEUROSCI.4050-04.2005

9. Tashiro A, Sandler VM, Toni N, Zhao C, Gage FH. NMDA-receptor-mediated, cell-specific integration of new neurons in adult dentate gyrus. Nature. 2006;442(7105):929–933. doi: 10.1038/nature05028

10. Stahl SM. Prescriber’s Guide (Stahl’s Essential Psychopharmacology). 7th Edition, Cambridge, UK: Cambridge University Press; 2021.

11. Atlas of Psychiatric Pharmacotherapy, Second Edition: By R. Shiloh, R. Stryjer, A. Weizman, D. Nutt, London: Taylor & Francis 2006:288 p. ISBN 1-84184-281-8.

12. Watkins JC, Jane DE. The glutamate story. Br J Pharmacol. 2006;147(1):100–108. doi: 10.1038/sj.bjp.0706444

13. Hollmann M, Heinemann S. Cloned glutamate receptors. Annu Rev Neurosci. 1994;17(1):31–108. doi: 10.1146/annurev.ne.17.030194.000335

14. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF. Structure, Function, and Pharmacology of Glutamate Receptor Ion Channels. Pharmacol Rev. 2021;73(4):298–487. doi: 10.1124/pharmrev.120.000131 PMID: 34753794; PMCID: PMC8626789.

15. Kakegawa W, Miyazaki T, Hirai H, Motohashi J, Mishina M, Watanabe M, Yuzaki M. Ca2 + permeability of the channel pore is not essential for the delta2 glutamate receptor to regulate synaptic plasticity and motor coordination. J Physiol. 2007;579:729–735. doi: 10.1113/jphysiol.2006.127100 PMID: 17255161. PMCID: PMC2151382.

16. Schmid SM, Kott S, Sager C, Huelsken T, Hollmann M. The glutamate receptor subunit delta2 is capable of gating its intrinsic ion channel as revealed by ligand binding domain transplantation. Proc Natl Acad Sci USA. 2009;106(25):10320–10325. doi: 10.1073/pnas.0900329106 PMID: 19506248.

17. Elegheert J, Kakegawa W, Clay JE, Shanks NF, Behiels E, Matsuda K, Kohda K, Miura E, Rossmann M, Mitakidis N, Motohashi J, Chang VT, Siebold C, Greger IH, Nakagawa T, Yuzaki M, Aricescu AR. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science. 2016;353(6296):295–299. doi: 10.1126/science.aae0104 PMID: 27418511; PMCID: PMC5291321.

18. Dadak S, Bouquier N, Goyet E, Fagni L, Levenes C, Perroy J. MGlu1 receptor canonical signaling pathway contributes to the opening of the orphan GluD2 receptor. Neuropharmacology. 2017;115(1):92–99. doi: 10.1016/j.neuropharm.2016.06.001

19. Sommer B, Keinänen K, Verdoorn TA, Wisden W, Burnashev N, Herb A, Köhler M, Takagi T, Sakmann B, Seeburg PH. Flip and Flop: a cell-specific functional switch in glutamate-operated channels of the CNS. Science. 1990;249(4976):1580–1585. doi: 10.1126/science.1699275 PMID: 1699275.

20. Mao LM, Guo ML, Jin DZ, Fibuch EE, Choe ES, Wang JQ. Post-translational modification biology of glutamate receptors and drug addiction Front Neuroanat. 2011;5:19. doi: 10.3389/fnana.2011.00019

21. Lussier MP, Sanz-Clemente A, Roche KW. Dynamic regulation of N-methyl-d-aspartate (NMDA) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors by posttranslational modifications. J Biol. Chem. October 2015;290(48):28596–28603. doi: 10.1074/jbc.r115.652750

22. Diering GH, Huganir RL. The AMPA receptor code of synaptic plasticity Neuron. 2018;100(2):314–329. doi: 10.1016/j.neuron.2018.10.018

23. Guergueltcheva V, Azmanov DN, Angelicheva D, Smith KR, Chamova T, Florez L, Bynevelt M, Nguyen T, Cherninkova S, Bojinova V, Kaprelyan A, Angelova L, Morar B, Chandler D, Kaneva R, Bahlo M, Tournev I, Kalaydjieva L. Autosomal-recessive congenital cerebellar ataxia is caused by mutations in metabotropic glutamate receptor 1. Am J Hum Genet. 2012;91(3):553–564. doi: 10.1016/j.ajhg.2012.07.019 Epub 2012 Aug 16. PMID: 22901947; PMCID: PMC3511982.

24. Protasova MS, Andreeva TV, Klyushnikov SA, Illarioshkin SN, Rogaev EI. Genetic Variant in GRM1 Underlies Congenital Cerebellar Ataxia with No Obvious Intellectual Disability. Int J Mol Sci. 2023;24(2):1551. doi: 10.3390/ijms24021551 PMID: 36675067; PMCID: PMC9865416.

25. Brašić JR, Goodman JA, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Mathur AK, Seibyl JP, Berry-Kravis EM, Wong DF, Budimirovic DB. Fragile X Mental Retardation Protein and Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Men with Fragile X Syndrome: A Pilot Study. Brain Sci. 2022;12(3):314. doi: 10.3390/brainsci12030314 PMID: 35326270; PMCID: PMC8946825.

26. Di Marco B, Dell’Albani P, D’Antoni S, Spatuzza M, Bonaccorso CM, Musumeci SA, Drago F, Bardoni B, Catania MV. Fragile X mental retardation protein (FMRP) and metabotropic glutamate receptor subtype 5 (mGlu5) control stress granule formation in astrocytes. Neurobiol Dis. 2021;154:105338. doi: 10.1016/j.nbd.2021.105338 Epub 2021 Mar 26. PMID: 33775821.

27. Budimirovic DB, Schlageter A, Filipovic-Sadic S, Protic DD, Bram E, Mahone EM, Nicholson K, Culp K, Javanmardi K, Kemppainen J, Hadd A, Sharp K, Adayev T, LaFauci G, Dobkin C, Zhou L, Brown WT, Berry-Kravis E, Kaufmann WE, Latham GJ. A Genotype-Phenotype Study of High-Resolution FMR1 Nucleic Acid and Protein Analyses in Fragile X Patients with Neurobehavioral Assessments. Brain Sci. 2020;10(10):694. doi: 10.3390/brainsci10100694 PMID: 33008014; PMCID: PMC7601415.

28. Brašić JR, Nandi A, Russell DS, Jennings D, Barret O, Martin SD, Slifer K, Sedlak T, Seibyl JP, Wong DF, Budimirovic DB. Cerebral Expression of Metabotropic Glutamate Receptor Subtype 5 in Idiopathic Autism Spectrum Disorder and Fragile X Syndrome: A Pilot Study. Int J Mol Sci. 2021;22(6):2863. doi: 10.3390/ ijms22062863 PMID: 33799851; PMCID: PMC7999711.

29. Marafi D, Mitani T, Isikay S, Hertecant J, Almannai M, Manickam K, AbouJamra R, El-Hattab AW, Rajah J, Fatih JM, Du H, Karaca E, Bayram Y, Punetha J, Rosenfeld JA, Jhangiani SN, Boerwinkle E, Akdemir ZC, Erdin S, Hunter JV, Gibbs RA, Pehlivan D, Posey JE, Lupski JR. Biallelic GRM7 variants cause epilepsy, microcephaly, and cerebral atrophy. Ann Clin Transl Neurol. 2020;7(5):610–627. doi: 10.1002/acn3.51003 PMID: 32286009; PMCID: PMC7261753.

30. Ismail V, Zachariassen LG, Godwin A, Sahakian M, Ellard S, Stals KL, Baple E, Brown KT, Foulds N, Wheway G, Parker MO, Lyngby SM, Pedersen MG, Desir J, Bayat A, Musgaard M, Guille M, Kristensen AS, Baralle D. Identification and functional evaluation of GRIA1 missense and truncation variants in individuals with ID: An emerging neurodevelopmental syndrome. Am J Hum Genet. 2022;109(7):1217–1241. doi: 10.1016/j.ajhg.2022.05.009 Epub 2022 Jun 7. PMID: 35675825; PMCID: PMC9300760.

31. Salpietro V, Dixon CL, Guo H, Bello OD, Vandrovcova J, Efthymiou S, Maroo an R, Heimer G, Burglen L, Valence S, Torti E, Hacke M, Rankin J, Tariq H, Colin E, Procaccio V, Striano P, Mankad K, Lieb A, Chen S, Pisani L, Bettencourt C, Männikkö R, Manole A, Brusco A, Grosso E, Ferrero GB, Armstrong-Moron J, Gueden S, Bar-Yosef O, Tzadok M, Monaghan KG, Santiago-Sim T, Person RE, Cho MT, Willaert R, Yoo Y, Chae JH, Quan Y, Wu H, Wang T, Bernier RA, Xia K, Blesson A, Jain M, Motazacker MM, Jaeger B, Schneider AL, Boysen K, Muir AM, Myers CT, Gavrilova RH, Gunderson L, Schultz-Rogers L, Klee EW, Dyment D, Osmond M, Parellada M, Llorente C, Gonzalez-Peñas J, Carracedo A, Van Haeringen A, Ruivenkamp C, Nava C, Heron D, Nardello R, Iacomino M, Minetti C, Skabar A, Fabretto A; SYNAPS Study Group; Raspall-Chaure M, Chez M, Tsai A, Fassi E, Shinawi M, Constantino JN, De Zorzi R, Fortuna S, Kok F, Keren B, Bonneau D, Choi M, Benzeev B, Zara F, Mefford HC, Scheffer IE, Clayton-Smith J, Macaya A, Rothman JE, Eichler EE, Kullmann DM, Houlden H. AMPA receptor GluA2 subunit defects are a cause of neurodevelopmental disorders. Nat Commun. 2019;10(3094):1–16. doi: 10.1038/s41467-019-10910-w PMID: 31300657; PMCID: PMC6626132.

32. Bonnet C, Leheup B, Béri M, Philippe C, Grégoire MJ, Jonveaux P. Aberrant GRIA3 transcripts with multi-exon duplications in a family with X-linked mental retardation. Am J Med Genet Part A. 2009;149A(6):1280–1289. doi: 10.1002/ajmg.a.32858 PMID: 19449417.

33. Philips AK, Sirén A, Avela K, Somer M, Peippo M, Ahvenainen M, Doagu F, Arvio M, Kääriäinen H, Van Esch H, Froyen G, Haas SA, Hu H, Kalscheuer VM, Järvelä I. X-exome sequencing in Finnish families with intellectual disability — four novel mutations and two novel syndromic phenotypes. Orphanet J Rare Dis. 2014;9(1):49. doi: 10.1186/1750-1172-9-49 PMID: 24721225; PMCID: PMC4022384.

34. Hamanaka K, Miyoshi K, Sun JH, Hamada K, Komatsubara T, Saida K, Tsuchida N, Uchiyama Y, Fujita A, Mizuguchi T, Gerard B, Bayat A, Rinaldi B, Kato M, Tohyama J, Ogata K, Shi YS, Saito K, Miyatake S, Matsumoto N. Amelioration of a neurodevelopmental disorder by carbamazepine in a case having a gain-of-function GRIA3 variant. Hum Genet. 2022;141(2):1–11. doi: 10.1007/s00439-021-02416-7 Epub 2022 Jan 15. PMID: 35031858.

35. Martin S, Chamberlin A, Shinde DN, Hempel M, Strom TM, Schreiber A, Johannsen J, Ousager LB, Larsen MJ, Hansen LK, Fatemi A, Cohen JS, Lemke J, Sørensen KP, Helbig KL, Lessel D, AbouJamra R. De Novo Variants in GRIA4 Lead to Intellectual Disability with or without Seizures and Gait Abnormalities. Am J Hum Genet. 2017;101(6):1013–1020. doi: 10.1016/j.ajhg.2017.11.004 PMID: 29220673; PMCID: PMC5812909.

36. Platzer K, Lemke JR. GRIN1-Related Neurodevelopmental Disorder. 2019 Jun 20 [Updated 2021 Apr 1]. In: Adam MP, Mirzaa GM, Pagon RA et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK542807/

37. Platzer K, Lemke JR. GRIN2B-Related Neurodevelopmental Disorder. 2018 May 31 [Updated 2021 Mar 25]. In: Adam MP, Mirzaa GM, Pagon RA et al., editors. GeneReviews® [Internet]. Seattle (WA): University of Washington, Seattle; 1993–2023. Available from: https://www.ncbi.nlm.nih.gov/books/NBK501979/

38. Li D, Yuan H, Ortiz-Gonzalez XR, Marsh ED, Tian L, Mc- Cormick EM, Kosobucki GJ, Chen W, Schulien AJ, Chiavacci R, Tankovic A, Naase C, Brueckner F, von Stülpnagel-Steinbeis C, Hu C, Kusumoto H, Hedrich UB, Elsen G, Hörtnagel K, Aizenman E, Lemke JR, Hakonarson H, Traynelis SF, Falk MJ. GRIN2D Recurrent De Novo Dominant Mutation Causes a Severe Epileptic Encephalopathy Treatable with NMDA Receptor Channel Blockers. Am J Hum Genet. 2016;99(4):802–816. doi: 10.1016/j.ajhg.2016.07.013 Epub 2016 Sep 8. PMID: 27616483; PMCID: PMC5065652.

39. Tsuchida N, Hamada K, Shiina M, Kato M, Kobayashi Y, Tohyama J, Kimura K, Hoshino K, Ganesan V, Teik KW, Nakashima M, Mitsuhashi S, Mizuguchi T, Takata A, Miyake N, Saitsu H, Ogata K, Miyatake S, Matsumoto N. GRIN2D variants in three cases of developmental and epileptic encephalopathy. Clin Genet. 2018;94(6):538–547. doi: 10.1111/cge.13454 PMID: 30280376.

40. Blakes AJM, English J, Banka S, Basu H. A homozygous GRIN1 null variant causes a more severe phenotype of early infantile epileptic encephalopathy. Am J Med Genet A. 2022;188(2):595–599. doi: 10.1002/ajmg.a.62528 Epub 2021 Oct 6. PMID: 34611970.

41. Landau WM, Kleffner FR. Syndrome of acquired aphasia with convulsive disorder in children. Neurology. 1957;7(8):523–530. doi: 10.1212/wnl.7.8.523 PMID: 13451887.

42. Huppke P, Kallenberg K, Gärtner J. Perisylvianpolymicrogyria in Landau–Kleffner syndrome. Neurology. 2005;64(9):1660. doi: 10.1212/01.WNL.0000160386.79347.4A PMID: 15883344.

43. Kugler SL, Bali B, Lieberman P, Strug L, Gagnon B, Murphy PL, Clarke T, Greenberg DA, Pal DK. An autosomal dominant genetically heterogeneous variant of rolandic epilepsy and speech disorder Epilepsia. 2008;49(6):1086–1090. doi: 10.1111/j.1528-1167.2007.01517.x Epub 2008 Jan 31. PMID: 18248446; PMCID: PMC2435390.

44. Stefanatos G. Changing perspectives on Landau–Kleffner syndrome. Clin Neuropsychol. 2011;25(6):963– 988. doi: 10.1080/13854046.2011.614779 PMID: 21955111.

45. Turner SJ, Mayes AK, Verhoeven A, Mandelstam SA, Morgan AT, Scheffer IE. GRIN2A: an aptly named gene for speech dysfunction. Neurology. 2015;84(6):586–593. doi: 10.1212/WNL.0000000000001228 Epub 2015 Jan 16. PMID: 25596506; PMCID: PMC4335991.

46. Haldeman-Englert CR, Chapman KA, Kruger H, Geiger EA, McDonald-McGinn DM, Rappaport E, Zackai EH, Spinner NB, Shaikh TH. A de novo 8.8-Mb deletion of 21q21.1-q21.3 in an autistic male with a complex rearrangement involving chromosomes 6, 10 and 21. Am J Med Genet A. 2010;152A(1):196–202. doi: 10.1002/ajmg.a.33176 PMCID: 20034085

47. Córdoba M, Rodriguez S, González Morón D, Medina N, Kauffman MA. Expanding the spectrum of Grik2 mutations: intellectual disability, behavioural disorder, epilepsy and dystonia. Clin Genet. 2014;87(3):293–295. doi: 10.1111/cge.12423 Epub 2014 Jul 10. PMID: 25039795.

48. Motazacker MM, Rost BR, Hucho T, Garshasbi M, Kahrizi K, Ullmann R, Abedini SS, Nieh SE, Amini SH, Goswami C, Tzschach A, Jensen LR, Schmitz D, Ropers HH, Najmabadi H, Kuss AW. A defect in the ionotropic glutamate receptor 6 gene (GRIK2) is associated with autosomal recessive mental retardation. Am J Hum Genet. 2007;81(4):792–798. doi: 10.1086/521275 Epub 2007 Aug 31. PMID: 17847003; PMCID: PMC2227928.

49. Najmabadi H, Motazacker MM, Garshasbi M, Kahrizi K, Tzschach A, Chen W, Behjati F, Hadavi V, Nieh SE, Abedini SS, Vazifehmand R, Firouzabadi SG, Jamali P, Falah M, Seifati SM, Grüters A, Lenzner S, Jensen LR, Rüschendorf F, Kuss AW, Ropers HH. Homozygosity mapping in consanguineous families reveals extreme heterogeneity of non-syndromic autosomal recessive mental retardation and identifies 8 novel gene loci. Hum Genet. 2007;121(1):43–48. doi: 10.1007/s00439-006-0292-0 Epub 2006 Nov 21. PMID: 17120046.

50. Takenouchi T, Hashida N, Torii C, Kosaki R, Takahashi T, Kosaki K. 1p34.3 deletion involving GRIK3: Further clinical implication of GRIK family glutamate receptors in the pathogenesis of developmental delay. Am J Med Genet A. 2014;164A(2):456–460. doi: 10.1002/ajmg.a.36240 Epub 2013 Nov 25. PMID: 24449200.

51. Pickard BS, Malloy MP, Christoforou A, Thomson PA, Evans KL, Morris SW, Hampson M, Porteous DJ, Blackwood DH, Muir WJ. Cytogenetic and genetic evidence supports a role for the kainate-type glutamate receptor gene, GRIK4, in schizophrenia and bipolar disorder. Mol Psychiatry. 2006;11(9):847–857. doi: 10.1038/sj.mp.4001867

52. Nenadic I, Maitra R, Scherpiet S, Gaser C, Schultz CC, Schachtzabel C, Smesny S, Reichenbach JR, Treutlein J, Mühleisen TW, Deufel T, Cichon S, Rietschel M, Nöthen MM, Sauer H, Schlösser RG. Glutamate receptor δ 1 (GRID1) genetic variation and brain structure in schizophrenia. J Psychiatr Res. 2012;46(12):1531–1539. doi: 10.1016/j.jpsychires.2012.08.02 Epub 2012 Sep 25. PMID: 23017809.

53. Treutlein J, Mühleisen TW, Frank J, Mattheisen M, Herms S, Ludwig KU, Treutlein T, Schmael C, Strohmaier J, Bösshenz KV, Breuer R, Paul T, Witt SH, Schulze TG, Schlösser RG, Nenadic I, Sauer H, Becker T, Maier W, Cichon S, Nöthen MM, Rietschel M. Dissection of phenotype reveals possible association between schizophrenia and Glutamate Receptor Delta 1 (GRID1) gene promoter. Schizophr Res. 2009;111(1–3):123–130. doi: 10.1016/j.schres.2009.03.011 Epub 2009 Apr 5. PMID: 19346103.

54. Guo SZ, Huang K, Shi YY, Tang W, Zhou J, Feng GY, Zhu SM, Liu HJ, Chen Y, Sun XD, He L. A case-control association study between the GRID1 gene and schizophrenia in the Chinese Northern Han population. Schizophr Res. 2007;93(1–3):385–390. doi: 10.1016/j.schres.2007.03.007 Epub 2007 May 9. PMID: 17490860.

55. Fallin MD, Lasseter VK, Avramopoulos D, Nicodemus KK, Wolyniec PS, McGrath JA, Steel G, Nestadt G, Liang KY, Huganir RL, Valle D, Pulver AE. Bipolar I disorder and schizophrenia: a 440-single-nucleotide polymorphism screen of 64 candidate genes among Ashkenazi Jewish case-parent trios. Am J Hum Genet 2005;77(6):918–936. doi: 10.1086/497703 Epub 2005 Oct 28. PMID: 16380905; PMCID: PMC1285177.

56. Grigorenko AP, Protasova MS, Lisenkova AA, Reshetov DA, Andreeva TV, Garcias GL, Martino Roth MDG,Papassotiropoulos A, Rogaev EI. Neurodevelopmental Syndrome with Intellectual Disability, Speech Impairment, and Quadrupedia Is Associated with Glutamate Receptor Delta 2 Gene Defect. Cells. 2022;11(3):400. doi: 10.3390/cells11030400 PMID: 35159210; PMCID: PMC8834146.

57. Hills LB, Masri A, Konno K, Kakegawa W, Lam AT, Lim-Melia E, Chandy N, Hill RS, Partlow JN, Al-Saffar M, Nasir R, Stoler JM, Barkovich AJ, Watanabe M, Yuzaki M, Mochida GH. Deletions in GRID2 lead to a recessive syndrome of cerebellar ataxia and tonic upgaze in humans. Neurology. 2013;81(16):1378–1386. doi: 10.1212/WNL.0b013e3182a841a3 Epub 2013 Sep 27. PMID: 24078737; PMCID: PMC3806907.

58. Bagni C, Tassone F, Neri G, Hagerman R. Fragile X syndrome: causes, diagnosis, mechanisms, and therapeutics. J Clin Invest. 2012;122(12):4314–4322. doi: 10.1172/JCI63141 Epub 2012 Dec 3. PMID: 23202739; PMCID: PMC3533539.

59. Kim K, Hessl D, Randol JL, Espinal GM, Schneider A, Protic D, Aydin EY, Hagerman RJ, Hagerman PJ. Association between IQ and FMR1 protein (FMRP) across the spectrum of CGG repeat expansions. PLoS One 2019;14(12):e0226811. doi: 10.1371/journal.pone.0226811 PMID: 31891607; PMCID: PMC6938341.

60. Richter JD, Zhao X. The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci. 2021;22(4):209–222. doi: 10.1038/s41583-021-00432-0 Epub 2021 Feb 19. PMID: 33608673; PMCID: PMC8094212.

61. LaFauci G, Adayev T, Kascsak R, Brown WT. Detection and Quantification of the Fragile X Mental Retardation Protein 1 (FMRP). Genes (Basel). 2016;7(12):121. doi: 10.3390/genes7120121 PMID: 27941672; PMCID: PMC5192497.

62. Sirois CL, Li M, Guo Y, Korabelnikov T, Xing Y, Levesque B, Bhattacharyya A, Zhao X. Function of the trinucleotide (CGG) repeats within the FMR1 gene in human neurons; Proceedings of the Society for Neuroscience 50th Annual Meeting; 12–16 November 2021; (accessed on 25 June 2023). Available online: https://www.abstractsonline.com/pp8/#!/10485/presentation/16188


Рецензия

Для цитирования:


Абрамов А.В., Макушкин Е.В. Нарушения нейропсихического развития, обусловленные генетическими дефектами структуры рецепторов глутаматергической системы. ПСИХИАТРИЯ. 2024;22(1):90-98. https://doi.org/10.30629/2618-6667-2024-22-1-90-98

For citation:


Abramov A.V., Makushkin E.V. Neurodevelopmental Disorders Caused by Genetic Defects in Structure of Glutamatergic Receptors. Psychiatry (Moscow) (Psikhiatriya). 2024;22(1):90-98. (In Russ.) https://doi.org/10.30629/2618-6667-2024-22-1-90-98

Просмотров: 508


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)