Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Мoзговая изоформа креатинкиназы в лимбической коре мозга в норме и при шизофрении

https://doi.org/10.30629/2618-6667-2016-70-21-27

Abstract

Aim. To compare levels of brain isoform creatine phosphokinase (CPK BB) in autopsied anterior and posterior cingulate cortex from patients with schizophrenia and control subjects.Methods. Extracts of readily soluble and membrane-associated proteins were prepared from autopsied samples of anterior (Brodmann area 24) and posterior (Brodmann area 23) cingulate cortex from patients with schizophrenia ( n = 15) and from control group ( n = 14), the samples were matched by age and postmortem interval. CPK enzymatic activity was measured by determination of nonorganic phosphate, amounts of immunoreactive CPK В were estimated by ECL-Western blotting using monoclonal antibodies.Results. Significant decrease in CPK activity and amounts of immunoreactive CPK В was observed in fractions of readily soluble proteins in cingulate cortex of patients with schizophrenia compared with controls ( p < 0,01). No significant difference in CPK activity and amount of CPK B was found in membrane-associated protein fractions from cingulate cortex (areas 23 and 24) of patients with schizophrenia and controls.Conclusion. Significantly reduced level of the central energy metabolism enzyme (brain CPK BB) indicates the significant impairment of energy metabolism in cingulate cortex of patients with schizophrenia and represents important aspect of schizophrenia pathogenesis.

About the Authors

Ольга Савушкина
ФГБНУ «Научный центр психического здоровья»
Russian Federation


Елена Терешкина
ФГБНУ «Научный центр психического здоровья»
Russian Federation


Татьяна Прохорова
ФГБНУ «Научный центр психического здоровья»
Russian Federation


Елена Воробьева
ФГБНУ «Научный центр психического здоровья»
Russian Federation


Ирина Бокша
ФГБНУ «Научный центр психического здоровья»
Russian Federation


Г. Бурбаева
Гульнур Шингожиевна
Russian Federation


References

1. Kann O. The interneuron energy hypothesis: Implica- tions for brain disease. Neurobiol Dis.2015;pii: S0969- 9961(15)30025-5. doi: 10.1016/j.nbd.2015.08.005

2. Andres R.H., Ducray A.D., Schlattner U., Wallimann T., Wid- mer H.R. Functions and effects of creatine in the central nervous system. Brain Res. Bull.2008;76(4):329-343. doi: 10.1016/j.brainresbull.2008.02.035

3. Shi X.F., Kondo D.G., Sung Y.H., Hellem T.L., Fiedler K.K., Jeong E.K., Huber R.S., Renshaw P.F. Frontal lobe bioener- getic metabolism in depressed adolescents with bipolar dis- order: a phosphorus-31 magnetic resonance spectroscopy study. Bipolar Disord. 2012;14(6):607-617. doi: 10.1111/j.1399-5618.2012.01040.x

4. MacDonald M.L., Naydenov A., Chu M., Matzilevich D., Konra- di C.В. Decrease in creatine kinase messenger RNA expres- sion in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder.Вipolar Disord. 2006;8(3):255-264

5. Wood S.J., Berger G., Velakoulis D., Phillips L.J., McGor- ry P.D., Yung A.R., Desmond P., Pantelis C.. Proton magnetic resonance spectroscopy in first episode psychosis and ultra high-risk individuals. Schizophr. Bull. 2003;29(4):831-843

6. Smesny S., Gussew A., Biesel N.J., Schack S., Walther M., Rzanny R., Milleit B., Gaser C., Sobanski T., Schultz C.C., Amminger P., Hipler U.C., Sauer H., Reichenbach J.R. Gluta- matergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients. Schi- zophr. Res. 2015;168(1-2):322-329. doi: 10.1016/j.schres.2015.07.013

7. Du F., Cooper A.J., Thida T., Sehovic S., Lukas S.E., Co- hen B.M., Zhang X., Ongür D. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured us- ing 31P magnetization transfer spectroscopy. JAMA Psychi- atry. 2014;71(1):19-27. doi: 10.1001/jamapsychiatry.2013.2287

8. Burbaeva G.Sh., Savushkina O.K., Boksha I.S. Comparative study of creatine kinase BB decrease in brain of patients with Alzheimer’s disease and schizophrenia. NATO Science Series, IOS Press; Netherlands. 2003:125-132

9. Kanaan R.A., Borgwardt S., McGuire P.K., Craig M.C., Mur- phy D.G., Picchioni M., Shergill S.S., Jones D.K., Catani M. Microstructural organization of cerebellar tracts in schi- zophrenia. Biol. Psychiatry. 2009 Dec 1;66 (11):1067-1069. doi: 10.1016/j.biopsych.2009.07.028

10. Ellison-Wright I., Bullmore E. Meta-analysis of diffusion tensor imaging studies in schizophrenia. Schizophr. Res. 2009 Mar;108(1-3):3-10. doi: 10.1016/j.schres.2008.11.021

11. Козловский С.А., Величковский Б.Б., Вартанов А.В., Нико- нова Е.Ю., Величковский Б.М. Роль областей цингулярной коры в функционировании памяти человека. Эксперимен- тальная психология. 2012. Т. 5. № 1. С. 12-22

12. Fujiwara H., Namiki C., Hirao K., Miyata J., Shi- mizu M., Fukuyama H., Sawamoto N., Hayashi T., Murai T. Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: a diffu- sion tensor imaging study. Schizophr. Res. 2007 Sep;95(1- 3):215-222

13. Choi J.S., Kang D. H., Kim J.J., Ha T.H., Roh K.S., Youn T. , Kwon J.S. Decreased caudal anterior cingulate gyrus volume and positive symptoms in schizophrenia. Psychiatry Research. 2005; 139(3) 239-247

14. Koo M.S., Levitt J.J., Salisbury D.F., Nakamura M., Shen- ton M.E., McCarleyR.W. A cross-sectional and longitudinal 26 magnetic resonance imaging study of cingulate gyrus gray matter volume abnormalities in first-episode schizophrenia and first-episode affective psychosis. Archives of General Psychiatry. 2008; 65(7):746-760

15. Mitelman S.A., Shihabuddin L., Brickman A.M., Ha- lett E.A., Buchsbaum M.S. Volume of the cingulate and outcome in schizophrenia. Schizophrenia Research, 2005, 72(2-3):91-108

16. Востриков В.М., Артюхова О.А., Холмова М.А., Самородов А.В., Уранова Н.А. Пространственная организация олиго- дендроцитов и пирамидных нейронов в передней лимби- ческой коре в норме и при шизофрении (новые возмож- ности компьютерной морфометрии). Журнал неврологии и психиатрии им. C.C. Корсакова. 2013; 113(12): 67-70

17. Fiske C.H., SubbaRow Y. The colorimetric determination of phosphorus. J. Biol. Chem. 1925;66:375

18. Burbaeva G.Sh., Boksha I.S., Tereshkina E.B., Savushki- na O.K., Starodubtseva L.I., Turishcheva M.S. Glutamate me- tabolizing enzymes in prefrontal cortex of Alzheimer’s dis- ease patients. Neurochemical Res. 2005;30 (11):1443-1451. DOI: 10.1007/s11064-005-8654-x

19. Burbaeva G.Sh., Aksenova M.V., Makarenko I.G. Decreased level of creatine kinase BB in the frontal cortex of Alzhei- mer patients. Dementia. 1992;3:91-94

20. Burbaeva G.Sh., Boksha I.S., Tereshkina E.B., Savushki- na O.K., Prokhorova T.A., Vorobyeva E.A. Glutamate and GABA-Metabolizing Enzymes in Cerebellum in Alzheimer's Disease: Phosphate-Activated Glutaminase and Glutamic Acid Decarboxylase. Cerebellum. 2014;13(3):607-615. doi: 10.1007/s12311-014-0573-4

21. Prabakaran S., Swatton J.E., Ryan M.M., Huffaker S.J., Huang J.T., Griffin J.L., Wayland M., Freeman T., Dud- bridge F., Lilley K.S., Karp N.A., Hester S., Tkachev D., Mim- mack M.L., Yolken R.H., Webster M.J., Torrey E.F., Bahn S. Mitochondrial dysfunction in schizophrenia: evidence for compromised brain metabolism and oxidative stress. Mol. Psychiatry. 2004;9(7):684-697, 643


Review

For citations:


 ,  ,  ,  ,  ,   . Psychiatry (Moscow) (Psikhiatriya). 2016;(71):21-27. https://doi.org/10.30629/2618-6667-2016-70-21-27

Views: 616


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)