Preview

ПСИХИАТРИЯ

Расширенный поиск

Креатин-креатинфосфатная система в норме и при психических заболеваниях

https://doi.org/10.30629/2618-6667-2024-22-5-94-106

Аннотация

Обоснование: для нормального функционирования мозга необходима система поддержания пулов и равновесия концентраций основных макроэргических соединений — АТФ и креатинфосфата (КрФ). Ее основные компоненты — это креатин (Кр), креатинфосфат (КрФ) и креатинфосфокиназа (КФК, или креатинкиназа), катализирующая реакцию переноса высокоэнергетического фосфорного остатка между АТФ, Кр и КрФ. Цель обзора — провести анализ результатов исследований элементов Кр — КрФ системы: Кр, КрФ и КФК при психических и нейродегенеративных расстройствах и рассмотреть возможности использования Кр — КрФ-ориентированной терапии психических и нейродегенеративных расстройств. Методы: по сочетаниям ключевых слов «креатин», «креатинфосфат», «креатинкиназа», «шизофрения», «биполярное аффективное расстройство», «болезнь Альцгеймера», «фармакотерапия» проведен поиск источников по базам данных Medline/PubMed, Scopus и РИНЦ. Заключение: критическое рассмотрение оригинальных статей, как клинических, так и экспериментальных, включая исследования, выполненные на моделях животных, дает веское основание считать подтвержденной вовлеченность Кр — КрФ системы в патогенез психических заболеваний и открывает дальнейшие перспективы Кр — КрФ-ориентированной терапии психических и нейродегенеративных расстройств, однако необходимо проведение дальнейших клинических исследований Кр — КрФ системы в психиатрии.

Об авторах

Г. Ш. Бурбаева
ФГБНУ «Научный центр психического здоровья»
Россия

Гульнур Шингожиевна Бурбаева, доктор биологических наук, профессор, главный научный сотруднк, лаборатория нейрохимии

Москва



И. С. Бокша
ФГБНУ «Научный центр психического здоровья»
Россия

Ирина Сергеевна Бокша, доктор биологических наук, главный научный сотрудник, лаборатория нейрохимии

Москва



О. К. Савушкина
ФГБНУ «Научный центр психического здоровья»
Россия

Ольга Константиновна Савушкина, кандидат биологических наук, исполняющий обязанности заведующего лабораторией, ведущий научный сотрудник, лаборатория нейрохимии

Москва



Т. А. Прохорова
ФГБНУ «Научный центр психического здоровья»
Россия

Татьяна Андреевна Прохорова, научный сотрудник, лаборатория нейрохимии

Москва



Е. Б. Терешкина
ФГБНУ «Научный центр психического здоровья»
Россия

Елена Борисовна Терешкина, кандидат биологических наук, старший научный сотрудник, лаборатория нейрохимии

Москва



Е. А. Воробьёва
ФГБНУ «Научный центр психического здоровья»
Россия

Елена Анатольевна Воробьёва, кандидат биологических наук, научный сотрудник, лаборатория нейрохимии

Москва



Список литературы

1. Maly IV, Morales MJ, Pletnikov MV. Astrocyte Bioenergetics and Major Psychiatric Disorders. Adv Neurobiol. 2021;26:173-227. doi: 10.1007/978-3-030-77375-5

2. Бокша ИС, Прохорова ТА, Савушкина ОК, Терешкина ЕБ, Воробьева ЕА, Бурбаева ГШ. Аномалии энергетического метаболизма при шизофрении и возможные патогенетически-ориентированные терапевтические подходы. Нейрохимия. 2023;40(4):406-422. doi: 10.31857/S1027813323040088.

3. Meftahi GH, Hatef B, Pirzad Jahromi G. Creatine Activity as a Neuromodulator in the Central Nervous System. Arch Razi Inst. 2023; 78(4):1169-1175. doi: 10.32592/ARI.2023.78.4.1169

4. Cunha MP, Lieberknecht V, Ramos-Hryb AB, Olescowicz G, Ludka FK, Tasca CI, Gabilan NH, Rodrigues AL. Creatine affords protection against glutamate-induced nitrosative and oxidative stress. Neurochem Int. 2016;95:4-14. doi: 10.1016/j.neuint.2016.01.002

5. Genius J, Geiger J, Bender A, Möller HJ, Klopstock T, Rujescu D. Creatine protects against excitoxicity in an in vitro model of neurodegeneration. PLoS One. 2012;7(2):e30554. doi: 10.1371/journal.pone.0030554

6. Rambo LM, Ribeiro LR, Schramm VG, Berch AM, Stamm DN, Della-Pace ID, Silva LF, Furian AF, Oliveira MS, Fighera MR, Royes LF. Creatine increases hippocampal Na(+ ),K(+ )-ATPase activity via NMDA-calcineurin pathway. Brain Res Bull. 2012;88(6):553-559. doi: 10.1016/j.brainresbull.2012.06.007

7. Cunha MP, Pazini FL, Ludka FK, Rosa JM, Oliveira Á, Budni J, Ramos-Hryb AB, Lieberknecht V, Bettio LE, Martín-de-Saavedra MD, López MG, Tasca CI, Rodrigues AL. The modulation of NMDA receptors and L-arginine/nitric oxide pathway is implicated in the anti-immobility effect of creatine in the tail suspension test. Amino Acids. 2015 Apr;47(4):795-811. doi: 10.1007/s00726-014-1910-0

8. Souza MA, Magni DV, Guerra GP, Oliveira MS, Furian AF, Pereira L, Marquez SV, Ferreira J, Fighera MR, Royes LF. Involvement of hippocampal CAMKII/CREB signaling in the spatial memory retention induced by creatine. Amino Acids. 2012;43(6):2491-2503. doi: 10.1007/s00726-012-1329-4

9. Gerbatin RR, Silva LFA, Hoffmann MS, Della-Pace ID, do Nascimento PS, Kegler A, de Zorzi VN, Cunha JM, Botelho P, Neto JBT, Furian AF, Oliveira MS, Fighera MR, Royes LFF. Delayed creatine supplementation counteracts reduction of GABAergic function and protects against seizures susceptibility after traumatic brain injury in rats. Prog Neuropsychopharmacol Biol Psychiatry. 2019;92:328-338. doi: 10.1016/j.pnpbp.2019.02.004

10. Andres RH, Huber AW, Schlattner U, Pérez-Bouza A, Krebs SH, Seiler RW, Wallimann T, Widmer HR. Effects of creatine treatment on the survival of dopaminergic neurons in cultured fetal ventral mesencephalic tissue. Neuroscience. 2005;133(3):701-713. doi: 10.1016/j.neuroscience.2005.03.004

11. Cunha MP, Pazini FL, Oliveira Á, Machado DG, Rodrigues AL. Evidence for the involvement of 5-HT1A receptor in the acute antidepressant-like effect of creatine in mice. Brain Res Bull. 2013;95:61-69. doi: 10.1016/j.brainresbull.2013.01.005

12. Bian X, Zhu J, Jia X, Liang W, Yu S, Li Z, Zhang W, Rao Y. Suggestion of creatine as a new neurotransmitter by approaches ranging from chemical analysis and biochemistry to electrophysiology. Elife. 2023;12:RP89317. doi: 10.7554/eLife.89317

13. Béard E, Braissant O. Synthesis and transport of creatine in the CNS: importance for cerebral functions. J Neurochem. 2010;115(2):297-313. doi: 10.1111/j.1471-4159.2010.06935.x

14. Snow RJ, Murphy RM. Creatine and the creatine transporter: a review. Mol Cell Biochem. 2001;224(1– 2):169–181. doi: 10.1023/a:1011908606819

15. Ohtsuki S, Tachikawa M, Takanaga H, Shimizu H, Watanabe M, Hosoya K, Terasaki T. The blood-brain barrier creatine transporter is a major pathway for supplying creatine to the brain. J Cereb Blood Flow Metab. 2002;22(11):1327-1335. doi: 10.1097/01.WCB.0000033966.83623.7D

16. Braissant O, Henry H, Béard E, Uldry J. Creatine deficiency syndromes and the importance of creatine synthesis in the brain. Amino Acids. 2011;40(5):1315-1324. doi: 10.1007/s00726-011-0852-z

17. Mak CS, Waldvogel HJ, Dodd JR, Gilbert RT, Lowe MT, Birch NP, Faull RL, Christie DL. Immunohistochemical localisation of the creatine transporter in the rat brain. Neuroscience. 2009;163(2):571–585. doi: 10.1016/j.neuroscience.2009.06.065

18. van der Hart MG, Czéh B, de Biurrun G, Michaelis T, Watanabe T, Natt O, Frahm J, Fuchs E. Substance P receptor antagonist and clomipramine prevent stress-induced alterations in cerebral metabolites, cytogenesis in the dentate gyrus and hippocampal volume. Mol Psychiatry. 2002;7(9):933-941. doi: 10.1038/sj.mp.4001130

19. Knox D, Perrine SA, George SA, Galloway MP, Liberzon I. Single prolonged stress decreases glutamate, glutamine, and creatine concentrations in the rat medial prefrontal cortex. Neurosci Lett. 2010;480(1):16-20. doi: 10.1016/j.neulet.2010.05.052

20. Volz HR, Riehemann S, Maurer I, Smesny S, Sommer M, Rzanny R, Holstein W, Czekalla J, Sauer H. Reduced phosphodiesters and high-energy phosphates in the frontal lobe of schizophrenic patients: a (31)P chemical shift spectroscopic-imaging study. Biol Psychiatry. 2000;47(11):954-961. doi: 10.1016/s0006-3223(00)00235-3

21. Klemm S, Rzanny R, Riehemann S, Volz HP, Schmidt B, Gerhard UJ, Filz C, Schönberg A, Mentzel HJ, Kaiser WA, Blanz B. Cerebral phosphate metabolism in first-degree relatives of patients with schizophrenia. Am J Psychiatry. 2001;158(6):958-960. doi: 10.1176/appi.ajp.158.6.958

22. Jayakumar PN, Gangadhar BN, Venkatasubramanian G, Desai S, Velayudhan L, Subbakrishna D, Keshavan MS. High energy phosphate abnormalities normalize after antipsychotic treatment in schizophrenia: a longitudinal 31P MRS study of basal ganglia. Psychiatry Res. 2010;181(3):237-240. doi: 10.1016/j.pscychresns.2009.10.010

23. Yuksel C, Chen X, Chouinard VA, Nickerson LD, Gardner M, Cohen T, Öngür D, Du F. Abnormal Brain Bioenergetics in First-Episode Psychosis. Schizophr Bull Open. 2021;2(1):sgaa073. doi: 10.1093/schizbullopen/sgaa073

24. Ohrmann P, Siegmund A, Suslow T, Pedersen A, Spitzberg K, Kersting A, Rothermundt M, Arolt V, Heindel W, Pfleiderer B. Cognitive impairment and in vivo metabolites in first-episode neuroleptic-naive and chronic medicated schizophrenic patients: a proton magnetic resonance spectroscopy study. J Psychiatr Res. 2007;41(8):625-634. doi: 10.1016/j.jpsychires.2006.07.002

25. Ongür D, Prescot AP, Jensen JE, Cohen BM, Renshaw PF. Creatine abnormalities in schizophrenia and bipolar disorder. Psychiatry Res. 2009;172(1):44-48. doi: 10.1016/j.pscychresns.2008.06.002

26. Yoo SY, Yeon S, Choi CH, Kang DH, Lee JM, Shin NY, Jung WH, Choi JS, Jang DP, Kwon JS. Proton magnetic resonance spectroscopy in subjects with high genetic risk of schizophrenia: investigation of anterior cingulate, dorsolateral prefrontal cortex and thalamus. Schizophr Res. 2009;111(1-3):86-93. doi: 10.1016/j.schres.2009.03.036

27. Jensen JE, Miller J, Williamson PC, Neufeld RW, Menon RS, Malla A, Manchanda R, Schaefer B, Densmore M, Drost DJ. Focal changes in brain energy and phospholipid metabolism in first-episode schizophrenia: 31P-MRS chemical shift imaging study at 4 Tesla. Br J Psychiatry. 2004;184:409-415. doi: 10.1192/bjp.184.5.409

28. Lutkenhoff ES, van Erp TG, Thomas MA, Therman S, Manninen M, Huttunen MO, Kaprio J, Lönnqvist J, O’Neill J, Cannon TD. Proton MRS in twin pairs discordant for schizophrenia. Mol Psychiatry. 2010;15(3):308-318. doi:10.1038/mp.2008.87

29. Wood SJ, Berger GE, Wellard RM, Proffitt T, McConchie M, Velakoulis D, McGorry PD, Pantelis C. A 1H-MRS investigation of the medial temporal lobe in antipsychotic-naïve and early-treated first episode psychosis. Schizophr Res. 2008;102(1-3):163-170. doi: 10.1016/j.schres.2008.03.012

30. Auer DP, Wilke M, Grabner A, Heidenreich JO, Bronisch T, Wetter TC. Reduced NAA in the thalamus and altered membrane and glial metabolism in schizophrenic patients detected by 1H-MRS and tissue segmentation. Schizophr Res. 2001;52(1-2):87-99. doi: 10.1016/s0920-9964(01)00155-4

31. Keshavan MS, Dick RM, Diwadkar VA, Montrose DM, Prasad KM, Stanley JA. Striatal metabolic alterations in non-psychotic adolescent offspring at risk for schizophrenia: a (1)H spectroscopy study. Schizophr Res. 2009;115(1):88-93. doi: 10.1016/j.schres.2009.08.012

32. Deicken RF, Calabrese G, Merrin EL, Meyerhoff DJ, Dillon WP, Weiner MW, Fein G. 31-phosphorus magnetic resonance spectroscopy of the frontal and parietal lobes in chronic schizophrenia. Biol Psychiatry. 1994;36(8):503-510. doi: 10.1016/0006-3223(94)90613-0.

33. Frey BN, Stanley JA, Nery FG, Monkul ES, Nicoletti MA, Chen HH, Hatch JP, Caetano SC, Ortiz O, Kapczinski F, Soares JC. Abnormal cellular energy and phospholipid metabolism in the left dorsolateral prefrontal cortex of medication-free individuals with bipolar disorder: an in vivo 1H MRS study. Bipolar Disord. 2007; 9 Suppl 1:119127. doi: 10.1111/j.1399-5618.2007.00454.x

34. Cecil KM, DelBello MP, Sellars MC, Strakowski SM. Proton magnetic resonance spectroscopy of the frontal lobe and cerebellar vermis in children with a mood disorder and a familial risk for bipolar disorders. J Child Adolesc Psychopharmacol. 2003;13(4):545-555. doi: 10.1089/104454603322724931.

35. Murashita J, Kato T, Shioiri T, Inubushi T, Kato N. Altered brain energy metabolism in lithium-resistant bipolar disorder detected by photic stimulated 31PMR spectroscopy. Psychol Med. 2000;30(1):107-115. doi: 10.1017/s0033291799001439

36. Schlattner U, Tokarska-Schlattner M, Wallimann T. Mitochondrial creatine kinase in human health and disease. Biochim Biophys Acta. 2006; 1762(2):164-180. doi: 10.1016/j.bbadis.2005.09.004

37. Tachikawa M, Fukaya M, Terasaki T, Ohtsuki S, Watanabe M. Distinct cellular expressions of creatine synthetic enzyme GAMT and creatine kinases uCK-Mi and CK-B suggest a novel neuron-glial relationship for brain energy homeostasis. Eur J Neurosci. 2004;20(1):144-160. doi: 10.1111/j.1460-9568.2004.03478.x

38. Tokarska-Schlattner M, Epand RF, Meiler F, Zandomeneghi G, Neumann D, Widmer HR, Meier BH, Epand RM, Saks V, Wallimann T, Schlattner U. Phosphocreatine interacts with phospholipids, affects membrane properties and exerts membrane-protective effects. PLoS One. 2012;7(8):e43178. doi: 10.1371/journal.pone.0043178

39. Aksenov MY, Aksenova MV, Butterfield DA, Geddes JW, Markesbery WR. Protein oxidation in the brain in Alzheimer’s disease. Neuroscience. 2001;103(2):373-383. doi: 10.1016/s0306-4522(00)00580-7.

40. Clark D, Dedova I, Cordwell S, Matsumoto I. A proteome analysis of the anterior cingulate cortex gray matter in schizophrenia. Mol Psychiatry. 2006;11(5):459-470, 423. doi: 10.1038/sj.mp.4001806

41. Clark D, Dedova I, Cordwell S, Matsumoto I. Altered proteins of the anterior cingulate cortex white matter proteome in schizophrenia. Proteomics Clin Appl. 2007;1(2):157-166. doi: 10.1002/prca.200600541

42. Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I. Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl. 2007;1(10):1291-1305. doi: 10.1002/prca.200700230

43. Behan AT, Byrne C, Dunn MJ, Cagney G, Cotter DR. Proteomic analysis of membrane microdomain-associated proteins in the dorsolateral prefrontal cortex in schizophrenia and bipolar disorder reveals alterations in LAMP, STXBP1 and BASP1 protein expression. Mol Psychiatry. 2009;14(6):601-613. doi: 10.1038/mp.2008.7

44. Burbaeva GSh, Savushkina OK, Boksha IS. Comparative study of creatine kinase BB decrease in brain of patients with Alzheimer’s disease and schizophrenia. Creatine kinase and brain energy metabolism: function and disease. NATO Science Series, IOS Press; Netherlands. 2003;125-132.

45. Савушкина ОК, Терешкина ЕБ, Прохорова ТА, Воробьева ЕА, Бокша ИС, Бурбаева ГШ. Распределение изоформы В креатинкиназы в мозге при шизофрении. Журнал неврологии и психиатрии им. C.C. Корсакова. 2016;116(9):62-68.

46. Бурбаева ГШ, Аксенова МВ, Бибикова ВИ. Активность ВВ-креатифосфокиназы в некоторых структурах мозга у психически здоровых людей и больных шизофренией. Журнал неврологии и психиатрии им. C.C. Корсакова. 1987;7:1024-1028.

47. Klushnik TP, Spunde AYa, Yakovlev AG, Khuchua ZA, Saks VA, Vartanyan ME. Intracellular alterations of the creatine kinase isoforms in brains of schizophrenic patients. Mol Chem Neuropathol. 1991;15(3):271-280. doi: 10.1007/BF03161065. PMID: 1807268.

48. Du F, Cooper AJ, Thida T, Sehovic S, Lukas SE, Cohen BM, Zhang X, Ongür D. In vivo evidence for cerebral bioenergetic abnormalities in schizophrenia measured using 31P magnetization transfer spectroscopy. JAMA Psychiatry. 2014;71(1):19-27. doi: 10.1001/jamapsychiatry.2013.2287

49. Song X, Chen X, Yuksel C, Yuan J, Pizzagalli DA, Forester B, Öngür D, Du F. Bioenergetics and abnormal functional connectivity in psychotic disorders. Mol Psychiatry. 2021; 26(6):2483-2492. doi: 10.1038/s41380-020-00993-z

50. MacDonald ML, Naydenov A, Chu M, Matzilevich D, Konradi C. Decrease in creatine kinase messenger RNA expression in the hippocampus and dorsolateral prefrontal cortex in bipolar disorder. Bipolar Disord. 2006; 8(3):255-264. doi: 10.1111/j.1399-5618.2006.00302.x

51. Streijger F, Oerlemans F, Ellenbroek BA, Jost CR, Wieringa B, Van der Zee CE. Structural and behavioural consequences of double deficiency for creatine kinases BCK and UbCKmit. Behav Brain Res. 2005;157(2):219-234. doi: 10.1016/j.bbr.2004.07.002

52. Taylor JR, Abichandani L. Creatine phosphokinase elevations and psychiatric symptomatology. Biol Psychiatry. 1980;15(6):865-870. PMID: 7459407.

53. Hollander S, Hochman E, Shoval G, Taler M, Trommer S, Hermesh H, Weizman A, Krivoy A. The association between serum creatine kinase, mood and psychosis in inpatients with schizophrenia, bipolar and schizoaffective disorders. Psychiatry Res. 2016;238:333-337. doi: 10.1016/j.psychres.2016.01.058

54. Meng XD, Cao X, Li T, Li JP. Creatine kinase (CK) and its association with aggressive behavior in patients with schizophrenia. Schizophr Res. 2018; 197:478-483. doi: 10.1016/j.schres.2018.02.025

55. Бурбаева ГШ, Савушкина ОК, Дмитриев АВ. Активность мозговой креатинфосфокиназы в норме и при писихических заболеваниях (болезнь Альцгеймера, шизофрения). Вестник Российской академии медицинских наук. 1999;1:20-24.

56. Tayoshi S, Sumitani S, Taniguchi K, Shibuya-Tayoshi S, Numata S, Iga J, Nakataki M, Ueno S, Harada M, Ohmori T. Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS). Schizophr Res. 2009;108(1-3):69-77. doi: 10.1016/j.schres.2008.11.014

57. Lugenbiel P, Sartorius A, Vollmayr B, Schloss P. Creatine transporter expression after antidepressant therapy in rats bred for learned helplessness. World J Biol Psychiatry. 2010;11(2 Pt 2):329-333. doi: 10.1080/15622970903131597

58. Agostinho FR, Scaini G, Ferreira GK, Jeremias IC, Réus GZ, Rezin GT, Castro AA, Zugno AI, Quevedo J, Streck EL. Effects of olanzapine, fluoxetine and olanzapine/fluoxetine on creatine kinase activity in rat brain. Brain Res Bull. 2009;80(6):337-340. doi: 10.1016/j.brainresbull.2009.09.002

59. Kim SY, Lee YJ, Kim H, Lee DW, Woo DC, Choi CB, Chae JH, Choe BY. Desipramine attenuates forced swim test-induced behavioral and neurochemical alterations in mice: an in vivo(1)H-MRS study at 9.4T. Brain Res. 2010;1348:105-113. doi: 10.1016/j.brainres.2010.05.097

60. Réus GZ, Stringari RB, Gonçalves CL, Scaini G, Carvalho-Silva M, Jeremias GC, Jeremias IC, Ferreira GK, Streck EL, Hallak JE, Zuardi AW, Crippa JA, Quevedo J. Administration of harmine and imipramine alters creatine kinase and mitochondrial respiratory chain activities in the rat brain. Depress Res Treat. 2012;2012:987397. doi: 10.1155/2012/987397

61. Assis LC, Scaini G, Di-Pietro PB, Castro AA, Comim CM, Streck EL, Quevedo J. Effect of antipsychotics on creatine kinase activity in rat brain. Basic Clin Pharmacol Toxicol. 2007;101(5):315-319. doi: 10.1111/j.1742-7835.2007.00128.x

62. Allen PJ, D’Anci KE, Kanarek RB, Renshaw PF. Sex-specific antidepressant effects of dietary creatine with and without sub-acute fluoxetine in rats. Pharmacol Biochem Behav. 2012;101(4):588-601. doi: 10.1016/j.pbb.2012.03.00

63. Prokopidis K, Giannos P, Triantafyllidis KK, Kechagias KS, Forbes SC, Candow DG. Effects of creatine supplementation on memory in healthy individuals: a systematic review and meta-analysis of randomized controlled trials. Nutr Rev. 2023;81(4):416-427. doi: 10.1093/nutrit/nuac064

64. Gordji-Nejad A, Matusch A, Kleedörfer S, Jayeshkumar Patel H, Drzezga A, Elmenhorst D, Binkofski F, Bauer A. Single dose creatine improves cognitive performance and induces changes in cerebral high energy phosphates during sleep deprivation. Sci Rep. 2024;14(1):4937. doi: 10.1038/s41598-024-54249-9

65. Rae C, Digney AL, McEwan SR, Bates TC. Oral creatine monohydrate supplementation improves brain performance: a double-blind, placebo-controlled, crossover trial. Proc Biol Sci. 2003;270(1529):2147-2150. doi: 10.1098/rspb.2003.2492

66. McMorris T, Harris RC, Swain J, Corbett J, Collard K, Dyson RJ, Dye L, Hodgson C, Draper N. Effect of creatine supplementation and sleep deprivation, with mild exercise, on cognitive and psychomotor performance, mood state, and plasma concentrations of catecholamines and cortisol. Psychopharmacology (Berl). 2006;185(1):93-103. doi: 10.1007/s00213-005-0269-z

67. McMorris T, Mielcarz G, Harris RC, Swain JP, Howard A. Creatine supplementation and cognitive performance in elderly individuals. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2007;14(5):517-528. doi: 10.1080/13825580600788100.

68. Bianchi MC, Tosetti M, Battini R, Leuzzi V, Alessandri’ MG, Carducci C, Antonozzi I, Cioni G. Treatment monitoring of brain creatine deficiency syndromes: a 1H- and 31P-MR spectroscopy study. AJNR Am J Neuroradiol. 2007;28(3):548-554. PMID: 17353334; PMCID: PMC7977852.

69. Shi K, Zhao H, Xu S, Han H, Li W. Treatment efficacy of high-dose creatine supplementation in a child with creatine transporter (SLC6A8) deficiency. Mol Genet Genomic Med. 2021;9(4):e1640. doi: 10.1002/mgg3.1640

70. Koga Y, Takahashi H, Oikawa D, Tachibana T, Denbow DM, Furuse M. Brain creatine functions to attenuate acute stress responses through GABAnergic system in chicks. Neuroscience. 2005;132(1):65-71. doi: 10.1016/j.neuroscience.2005.01.004

71. Toniolo RA, Fernandes FBF, Silva M, Dias RDS, Lafer B. Cognitive effects of creatine monohydrate adjunctive therapy in patients with bipolar depression: Results from a randomized, double-blind, placebo-controlled trial. J Affect Disord. 2017; 224:69-75. doi: 10.1016/j.jad.2016.11.029

72. Hellem TL, Sung YH, Shi XF, Pett MA, Latendresse G, Morgan J, Huber RS, Kuykendall D, Lundberg KJ, Renshaw PF. Creatine as a Novel Treatment for Depression in Females Using Methamphetamine: A Pilot Study. J Dual Diagn. 2015;11(3-4):189-202. doi: 10.1080/15504263.2015.1100471

73. Smith AN, Morris JK, Carbuhn AF, Herda TJ, Keller JE, Sullivan DK, Taylor MK. Creatine as a Therapeutic Target in Alzheimer’s Disease. Curr Dev Nutr. 2023;7(11):102011. doi: 10.1016/j.cdnut.2023.102011

74. Taylor MK, Burns JM, Choi IY, Herda TJ, Lee P, Smith AN, Sullivan DK, Swerdlow RH, Wilkins HM. Protocol for a single-arm, pilot trial of creatine monohydrate supplementation in patients with Alzheimer’s disease. Pilot Feasibility Stud. 2024;10(1):42. doi: 10.1186/s40814-024-01469-5

75. Mabondzo A, Harati R, Broca-Brisson L, Guyot AC, Costa N, Cacciante F, Putignano E, Baroncelli L, Skelton MR, Saab C, Martini E, Benech H, Joudinaud T, Gaillard JC, Armengaud J, Hamoudi R. Dodecyl creatine ester improves cognitive function and identifies key protein drivers including KIF1A and PLCB1 in a mouse model of creatine transporter deficiency. Front Mol Neurosci. 2023;16:1118707. doi: 10.3389/fnmol.2023.1118707

76. Zhang W, Zhang H, Xing Y. Protective effects of phosphocreatine administered post-treatment combined with ischemic post-conditioning on rat hearts with myocardial ischemia/reperfusion injury. J Clin Med Res. 2015;7(4):242-247. doi: 10.14740/jocmr2087w

77. Кежун Л. В. Кардиометаболическая терапия при COVID-19 инфекции. Медицинские новости. 2021;9:30-34.

78. Andres RH, Ducray AD, Schlattner U, Wallimann T, Widmer HR. Functions and effects of creatine in the central nervous system. Brain Res Bull. 2008; 76(4):329-343. doi: 10.1016/j.brainresbull.2008.02.035

79. Sestili P, Martinelli C, Bravi G, Piccoli G, Curci R, Battistelli M, Falcieri E, Agostini D, Gioacchini AM, Stocchi V. Creatine supplementation affords cytoprotection in oxidatively injured cultured mammalian cells via direct antioxidant activity. Free Radic Biol Med. 2006;40(5):837-849. doi: 10.1016/j.freeradbiomed.2005.10.035.


Рецензия

Для цитирования:


Бурбаева Г.Ш., Бокша И.С., Савушкина О.К., Прохорова Т.А., Терешкина Е.Б., Воробьёва Е.А. Креатин-креатинфосфатная система в норме и при психических заболеваниях. ПСИХИАТРИЯ. 2024;22(5):94-106. https://doi.org/10.30629/2618-6667-2024-22-5-94-106

For citation:


Burbaeva G.Sh., Boksha I.S., Savushkina O.K., Prokhorova T.A., Tereshkina E.B., Vorobyeva E.A. Creatine – Creatine Phosphate System in Healthy Persons and in Patients with Mental Disorders. Psychiatry (Moscow) (Psikhiatriya). 2024;22(5):94-106. (In Russ.) https://doi.org/10.30629/2618-6667-2024-22-5-94-106

Просмотров: 207


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)