Comparative Study of the Complement System Properties in the Schizophrenia Patients’ Blood: the Results of Complement Activation in the Presence of Tetrahymena Pyriformis Ciliates and Determination of the Terminal Complement Complex by Enzyme Immunoassay
https://doi.org/10.30629/2618-6667-2024-22-6-54-62
Abstract
Background: according to the numerous data the complement system (CS) is involved in many mental disorders pathological process development. However, the results are contradictory and require the new methodological approaches being established.
One way of studying CS components impact on the pathological process in schizophrenia development is elaborated by the authors the method of assessing the CS functional activity by the recording the biological objects Tetrahymena pyriformis ciliates death in serum/plasma solutions through the CS cascade formation of the terminal component — the membrane attack complex (MAC) on the protozoa membrane. Aim: to study the specificities of the schizophrenia patients CS functioning by comparing the results of serum/plasma assessing effect on Tetrahymena pyriformis and enzyme immunoassay, which determines the quantitative content of the terminal complement complex in the patients’ blood. Patients and methods: the study included 28 women aged 16–40 years with paranoid schizophrenia (F20 according to ICD-10), examined before the start of psychopharmacotherapy. The functional activity of CS (faCS) was assessed using the BioLaT device, which records the death rate of Tetrahymena pyriformis ciliates. Quantitative determination of the terminal complement complex (TTC) in blood plasma was assessed using the ELISA KIT HK328. Results: the results of the two methods of clarifying CS features were only partially comparable. FaCS in patient plasma is characterized by significant fluctuations: 25% of the examined patients were above the normal rate, 32% — below. The alternative pathway of CS activation was indicated by varying the salt composition of the protozoa incubation medium. The TCC midpoint in the patients’ group was twice as high as in reference group. According to Spearman’s rank correlation, a weak relationship was established between the faCS and TCC parameters, which may be a sign of fluid-phase MAC presence in the terminal complement complex and also the contribution of the classical and lectin CS pathways components to the activation. Conclusion: CS involvement in pathogenesis of schizophrenia, presumably, can serve as a basis for complex treatment using medicine to decrease the terminal CS level.
About the Authors
A. N. PozdnyakovaRussian Federation
Anastasia N. Pozdnyakova, Junior Researcher, Laboratory of Neuroimmunology
Moscow
I. N. Otman
Russian Federation
Irina N. Otman, Cand. Sci. (Biol.), Researcher, Laboratory of Neuroimmunology
Moscow
S. A. Zozulya
Russian Federation
Svetlana A. Zozulya, Cand. Sci. (Biol.), Leading Researcher, Laboratory of Neuroimmunology
Moscow
N. V. Kost
Russian Federation
Natalya V. Kost, Dr. Sci. (Biol.), Professor, Chief Researcher, Laboratory of Neuroimmunology
Moscow
E. G. Cheremnykh
Russian Federation
Elena G. Cheremnykh, Cand. Sci. (Tech.), Senior Researcher, Laboratory of Biochemistry
Moscow
References
1. Inglis JE, Radziwon KA, Maniero GD. The serum complement system: a simplied laboratory exercise to measure the activity of an important component of the immune system. Adv Physiol Educ. 2008;32(4):317–321. doi: 10.1152/advan.00061.2007
2. Markiewski M, Lambris J. The Role of Complement in Inammatory Diseases. Am J Pathol. 2007;171(3):715– 727. doi: 10.2353/ajpath.2007.070166
3. Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, Lambris J, Huber-Lang M. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–79. doi: 10.1007/978-0-38778952-1_6
4. Bossi F, Peerschke E, Ghebrehiwet B, Tedesco F. Crosstalk between the complement and the kinin system in vascular permeability. Immunol Lett. 2011;140(1– 2):7–13. doi: 10.1016/j.imlet.2011.06.006
5. Bekassy Z, Lopatko Fagerström I, Bader M, Karpman D. Crosstalk between the renin–angiotensin, complement and kallikrein–kinin systems in inammation. Nature Reviews Immunology. 2022;22(7):411– 428. doi: 10.1038/s41577-021-00634-8
6. Ghebrehiwet B, Peerschke E. Complement and coagulation: key triggers of COVID-19-induced multiorgan pathology. J Clin Invest. 2020;130(11):5674–5676. doi: 10.1172/JCI142780
7. Merle N, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement system part I — molecular mechanisms of activation and regulation. Front Immunol. 2015;02:6:262. doi: 10.3389/mmu.2015.00262
8. Klyushnik TP. Inammation as a Universal Pathophysiological Mechanism of Chronic Non-Communicable Diseases. Psychiatry (Moscow) (Psikhiatriya). 2023;21(5):7–16. (In Russ.) doi: 10.30629/26186667-2023-21-5-7-16
9. Sarma JV, Ward PA. The complement system. Cell Tissue Res. 2011;343:227–235. doi: 10.1007/s00441010-1034-0
10. Bohlson S, Tenner A. Annual Review of Immunology Complement in the Brain: Contributions to Neuroprotection, Neuronal Plasticity, and Neuroinammation. Annu Rev Immunol. 2023.41:431–452. doi: 10.1146/ annurev-immunol-101921035639
11. Morgan BP. Complement in the pathogenesis of Alzheimer’s disease. Semin Immunopathol. 2018;40(1):113– 124. doi: 10.1007/s00281-017-0662-9
12. Loefer DA, Camp DM, Conant SB. Complement activation in the Parkinson’s disease substantia nigra: an immunocytochemical study. J Neuroinammation. 2006 Oct 19;3:29. doi: 10.1186/1742-2094-3-29. PMID: 17052351; PMCID: PMC1626447.
13. Druart M, Le Magueresse C. Emerging Roles of Complement in Psychiatric Disorders. Front Psychiatry. 2019 Aug 21;10:573. doi: 10.3389/fpsyt.2019.00573. PMID: 31496960; PMCID: PMC6712161.
14. Cheremnykh EG, Ivanov PA, Factor MI, Chikina EY., Nikitina SG, Simashkova NV, Brusov OS. The complement system as a marker of immune dysfunction in children with autism spectrum disorder. Medical immunology. 2019;21(4):773–780. (In Russ.). doi: 10.15789/1563-0625-2019-4-773-780
15. Persson M, Pekna M, Hansson E, Rönnbäck L, Neurosci E. The complement-derived anaphylatoxin C5a increases microglial GLT-1 expression and glutamate uptake in a TNF-alpha-independent manner. Eur J Neurosci. 2009;29(2):267–274. doi: 10.1111/j.14609568.2008.06575.x
16. Cardozoa P, Limaa I, Maciela E, Silvaa N, Dobranskyb T, Ribeiroa F. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol. 2019;17,1071–1095. doi: 10.2174/1570159X17666190603170511
17. Rice DS, Barone J. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ. Health Perspect. 2000;108:511–533. doi: 10.1289/ehp.00108s3511
18. Wang M, Zhang L, Gage F. Microglia, complement and schizophrenia. Nat Neurosci. 2019;22(3):333–334. doi: 10.1038/s41593-019-0343-1
19. Keshavan M, Lizano P, Prasad K. The synaptic pruning hypothesis of schizophrenia: promises and challenges. World Psychiatry. 2022;19(1):110–111. doi: 10.1002/wps.20725
20. Cardozo P, Lima IB, Maciel E, Silva N, Dobransky T, Ribeiro F. Synaptic Elimination in Neurological Disorders. Curr Neuropharmacol. 2019;17(11):1071–1095. doi: 10.2174/1570159X17666190603170511 61
21. Magdalon J, Mansur F, Teles e Silva A, Abreu de Goes V, Reiner O, Laurato Sertié A. Complement System in Brain Architecture and Neurodevelopmental Disorders. Front Neurosci. 2020 Feb 5:14:23. doi: 10.3389/ fnins.2020.00023
22. Черемных ЕГ, Иванов ПА, Фактор МИ, Карпова НС, Васильева ЕФ, Гусев КВ, Брусов ОС. Новый метод оценки функциональной активности системы комплемента. Медицинская иммунология. 2015;17(5):479–488. doi: 10.15789/1563-06252015-5-479-488
23. Cheremnykh EG, Ivanov PA, Factor MI, Karpova NS, Vasilyeva EF, Gusev KV, Brusov OS. A new method to assess the functional activity of serum complement system. Medical Immunology. 2015;17(5):479–488. (In Russ.). doi: 10.15789/1563-0625-2015-5-479488
24. Ivanov PA, Faktor MI, Karpova NS, Cheremnykh EG, Brusov OS. Complement-mediated death of the ciliates Tetrahymena pyriformis under the inuence of human blood serum. Bulletin of Experimental Biology and Medicine. 2015;160(12):739–743. (In Russ.).
25. Cheremnykh EG, Pokataev AS, Gridunova VN. Device for biological research. Patent RU. 2361913С2. 2009;20. (In Russ.).
26. Royston TP. Approximating the Shapiro-Wilk W-Test for non-normality. Statistics and Computing. 1992;10:11:585108. doi: 10.3389/mmu.2020.585108
27. Barnum SR, Bubeck D, Schein TN. Soluble Membrane Attack Complex: Biochemistry and Immunobiology. Front Immunol. 2020 Nov 10;11:585108. doi: 10.3389/fimmu.2020.585108. PMID: 33240274; PMCID: PMC7683570.
28. Harder MJ, Kuhn N, Schrezenmeier H, Höchsmann B, von Zabern I, Weinstock C, Simmet T, Ricklin D, Lambris JD, Skerra A, Anliker M, Schmidt CQ. Incomplete inhibition by eculizumab: mechanistic evidence for residual C5 activity during strong complement activation. Blood. 2017 Feb 23;129(8):970–980. doi: 10.1182/blood-2016-08-732800. Epub 2016 Dec 27. PMID: 28028023; PMCID: PMC5324716.
Review
For citations:
Pozdnyakova A.N., Otman I.N., Zozulya S.A., Kost N.V., Cheremnykh E.G. Comparative Study of the Complement System Properties in the Schizophrenia Patients’ Blood: the Results of Complement Activation in the Presence of Tetrahymena Pyriformis Ciliates and Determination of the Terminal Complement Complex by Enzyme Immunoassay. Psychiatry (Moscow) (Psikhiatriya). 2024;22(6):54-62. (In Russ.) https://doi.org/10.30629/2618-6667-2024-22-6-54-62