Functional Connectivity within Temporal Brain Regions and Conversion to Alzheimer’s Disease in Amnestic Mild Cognitive Impairment
https://doi.org/10.30629/2618-6667-2025-23-1-6-17
Abstract
Background: structural and neurochemical abnormalities in temporal lobe and temporoparietal junction (T-TPJ) are seen not only in Alzheimer’s disease (AD) but also in amnestic mild cognitive impairment (aMCI). At the same time, studies of conversion to dementia focused on functional characteristics of these regions are lacking. The aim was to search for patterns of functional connectivity (FC) within T-TPJ that differentiate patients with aMCI with future conversion to AD from stable aMCI patients and healthy controls. Patients, Comparison Group and Methods: patients with aMCI who further converted to dementia due to AD (converters, n = 15), patients with stable aMCI (n = 12), and healthy individuals without cognitive deficits (n = 29) underwent resting-state functional magnetic resonance imaging. FC between cortical T-TPJ structures was compared between groups separately for each hemisphere (one-way ANCOVA and post hoc between-group comparisons). Results: an increased FC between posterior parts of left middle and inferior temporal gyri was observed in converters compared to other groups. There was an inverse correlation between this FC and delayed recall of words (MoCA scale) in the entire sample, however, this correlation did not reach the level of statistical significance (p = 0.055). Conclusions: the posterior parts of left middle and inferior temporal gyri are involved in auditory verbal memory and storing of visual images associated with a word, respectively. Therefore, а pattern of increased FC observed in future converters to AD may be a consequence of pathological processes that have already started and/or compensatory mechanisms.
Keywords
About the Authors
Ya. R. PanikratovaRussian Federation
Yana R. Panikratova, Cand. Sci. (Psychol.), Senior research scientist, Laboratory of neuroimaging and multimodal analysis
Moscow
A. Yu. Komarova
Russian Federation
Alina Yu. Komarova, Research assistant, Laboratory of neuroimaging and multimodal analysis
Moscow
E. G. Abdullina
Russian Federation
Ekaterina G. Abdullina, Junior research scientist, Laboratory of neuroimaging and multimodal analysis
Moscow
O. V. Bozhko
Russian Federation
Olga V. Bozhko, PhD, radiologist, Radiology department
Moscow
N. S. Cherkasov
Russian Federation
Nikita S. Cherkasov, Junior research scientist, Department of geriatric psychiatry
Moscow
S. I. Gavrilova
Russian Federation
Svetlana I. Gavrilova, Dr. Sci. (Med.), Professor, Chief researcher, Department of geriatric psychiatry
Moscow
I. V. Kolykhalov
Russian Federation
Igor V. Kolykhalov, Dr. Sci. (Med.), Head of Department, Department of geriatric psychiatry
Moscow
I. S. Lebedeva
Russian Federation
Irina S. Lebedeva, Dr. Sci. (Biol.), Head of Laboratory, Laboratory of neuroimaging and multimodal analysis
Moscow
References
1. Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7(3):270–279. doi: 10.1016/j.jalz.2011.03.008
2. Bai W, Chen P, Cai H, Zhang Q, Su Z, Cheung T, Jackson T, Sha S, Xiang YT. Worldwide prevalence of mild cognitive impairment among community dwellers aged 50 years and older: a meta-analysis and systematic review of epidemiology studies. Age Ageing. 2022;51(8). doi: 10.1093/ageing/afac173
3. Anderson ND. State of the science on mild cognitive impairment (MCI). CNS Spectr. 2019;24(1):78–87. doi: 10.1017/S1092852918001347
4. Jungwirth S, Zehetmayer S, Hinterberger M, Tragl KH, Fischer P. The validity of amnestic MCI and non-amnestic MCI at age 75 in the prediction of Alzheimer’s dementia and vascular dementia. Int Psychogeriatr. 2012;24(6):959–966. doi: 10.1017/S1041610211002870
5. Vos SJ, van Rossum IA, Verhey F, Knol DL, Soininen H, Wahlund LO, Hampel H, Tsolaki M, Minthon L, Frisoni GB, Froelich L, Nobili F, van der Flier W, Blennow K, Wolz R, Scheltens P, Visser PJ. Prediction of Alzheimer disease in subjects with amnestic and nonamnestic MCI. Neurology. 2013;80(12):1124– 1132. doi: 10.1212/WNL.0b013e318288690c
6. Li Y, Wang X, Li Y, Sun Y, Sheng C, Li H, Li X, Yu Y, Chen G, Hu X, Jing B, Wang D, Li K, Jessen F, Xia M, Han Y. Abnormal Resting-State Functional Connectivity Strength in Mild Cognitive Impairment and Its Conversion to Alzheimer’s Disease. Neural Plast. 2016:4680972. doi: 10.1155/2016/4680972
7. Chen Z, Chen K, Li Y, Geng D, Li X, Liang X, Lu H, Ding S, Xiao Z, Ma X, Zheng L, Ding D, Zhao Q, Yang L; Alzheimer's Disease Neuroimaging Initiative. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI. Hum Brain Mapp. 2024 Jan;45(1):e26529. doi: 10.1002/hbm.26529 Epub 2023 Nov 22. PMID: 37991144; PMCID: PMC10789213.
8. Deng Y, Liu K, Shi L, Lei Y, Liang P, Li K, Chu WC, Wang D. Alzheimer's Disease Neuroimaging Initiative. Identifying the Alteration Patterns of Brain Functional Connectivity in Progressive Mild Cognitive Impairment Patients: A Longitudinal Whole-Brain Voxel-Wise Degree Analysis. Front Aging Neurosci. 2016 Aug 17;8:195. doi: 10.3389/fnagi.2016.00195 PMID: 27582703; PMCID: PMC4987370.
9. Huang CC, Huang WM, Chen CH, Jhou ZY, The Alzheimer’s Disease Neuroimaging Initiative, Lin CP. The Combination of Functional and Structural MRI Is a Potential Screening Tool in Alzheimer’s Disease. Front Aging Neurosci. 2018 Sep 21;10:251. doi: 10.3389/fnagi.2018.00251 PMID: 30297997; PMCID: PMC6160579.
10. Mondragón JD, Marapin R, De Deyn PP, Maurits N. Short- and Long-Term Functional Connectivity Differences Associated with Alzheimer’s Disease Progression. Dement Geriatr Cogn Dis Extra. 2021 Sep 23;11(3):235–249. doi: 10.1159/000518233 PMID: 34721501; PMCID: PMC8543355.
11. Hojjati SH, Ebrahimzadeh A, Babajani-Feremi A. Identifcation of the Early Stage of Alzheimer’s Disease Using Structural MRI and Resting-State fMRI. Front Neurol. 2019;10:904. doi: 10.3389/fneur.2019.00904
12. Zhang T, Liao Q, Zhang D, Zhang C, Yan J, Ngetich R, Zhang J, Jin Z, Li L. Predicting MCI to AD Conversation Using Integrated sMRI and rs-fMRI: Machine Learning and Graph Theory Approach. Front Aging Neurosci. 2021;13:688926. doi: 10.3389/fnagi.2021.688926
13. Qiu T, Luo X, Shen Z, Huang P, Xu X, Zhou J, Zhang M. Alzheimer’s Disease Neuroimaging Initiative. Disrupted Brain Network in Progressive Mild Cognitive Impairment Measured by Eigenvector Centrality Mapping is Linked to Cognition and Cerebrospinal Fluid Biomarkers. J Alzheimers Dis. 2016 Oct 18;54(4):1483– 1493. doi: 10.3233/JAD-160403 PMID: 27589525.
14. Filippi M, Basaia S, Canu E, Imperiale F, Magnani G, Falautano M, Comi G, Falini A, Agosta F. Changes in functional and structural brain connectome along the Alzheimer’s disease continuum. Mol Psychiatry. 2020;25(1):230–239. doi: 10.1038/s41380-018-0067-8
15. Chandra A, Dervenoulas G, Politis M; Alzheimer’s Disease Neuroimaging Initiative. Magnetic resonance imaging in Alzheimer's disease and mild cognitive impairment. J Neurol. 2019 Jun;266(6):1293–1302. doi: 10.1007/s00415-018-9016-3 Epub 2018 Aug 17. PMID: 30120563; PMCID: PMC6517561.
16. Wang Y, Li Q, Yao L, He N, Tang Y, Chen L, Long F, Chen Y, Kemp GJ, Lui S, Li F. Shared and differing functional connectivity abnormalities of the default mode network in mild cognitive impairment and Alzheimer’s disease. Cereb Cortex. 2024;34(3). doi: 10.1093/cercor/bhae094
17. Ibrahim B, Suppiah S, Ibrahim N, Mohamad M, Hassan HA, Nasser NS, Saripan MI. Diagnostic power of resting-state fMRI for detection of network connectivity in Alzheimer’s disease and mild cognitive impairment: A systematic review. Hum Brain Mapp. 2021;42(9):2941–2968. doi: 10.1002/hbm.25369
18. Jovicich J, Babiloni C, Ferrari C, Marizzoni M, Moretti DV, Del Percio C, Lizio R, Lopez S, Galluzzi S, Albani D, Cavaliere L, Minati L, Didic M, Fiedler U, Forloni G, Hensch T, Molinuevo JL, Bartres Faz D, Nobili F, Orlandi D, Parnetti L, Farotti L, Costa C, Payoux P, Rossini PM, Marra C, Schonknecht P, Soricelli A, Noce G, Salvatore M, Tsolaki M, Visser PJ, Richardson JC, Wiltfang J, Bordet R, Blin O, Frisoniand GB, the PharmaCog C. Two-Year Longitudinal Monitoring of Amnestic Mild Cognitive Impairment Patients with Prodromal Alzheimer’s Disease Using Topographical Biomarkers Derived from Functional Magnetic Resonance Imaging and Electroencephalographic Activity. J Alzheimers Dis. 2019;69(1):15–35. doi: 10.3233/JAD-180158
19. Zheng D, Ruan Y, Cao X, Guo W, Zhang X, Qi W, Yuan Q, Liang X, Zhang D, Huang Q, Xue C; Alzheimer's Disease Neuroimaging Initiative. Directed Functional Connectivity Changes of Triple Networks for Stable and Progressive Mild Cognitive Impairment. Neuroscience. 2024 May 3;545:47–58. doi: 10.1016/j.neuroscience.2024.03.003 Epub 2024 Mar 13. PMID: 38490330.
20. Marin-Marin L, Miro-Padilla A, Costumero V. Structural But Not Functional Connectivity Differences within Default Mode Network Indicate Conversion to Dementia. J Alzheimers Dis. 2023;91(4):1483–1494. doi: 10.3233/JAD-220603
21. Serra L, D’Amelio M, Esposito S, Di Domenico C, Koch G, Marra C, Mercuri NB, Caltagirone C, Artusi CA, Lopiano L, Cercignani M, Bozzali M. Ventral Tegmental Area Disconnection Contributes Two Years Early to Correctly Classify Patients Converted to Alzheimer’s Disease: Implications for Treatment. J Alzheimers Dis. 2021;82(3):985–1000. doi: 10.3233/JAD-210171
22. Ruan Y, Zheng D, Guo W, Cao X, Qi W, Yuan Q, Zhang X, Liang X, Zhang D, Xue C, Xiao C; and the Alzheimer’s Disease Neuroimaging Initiative. Shared and Specifc Changes of Cortico-Striatal Functional Connectivity in Stable Mild Cognitive Impairment and Progressive Mild Cognitive Impairment. J Alzheimers Dis. 2024;98(4):1301–1317. doi: 10.3233/JAD-231174 PMID: 38517789.
23. Xue C, Zheng D, Ruan Y, Guo W, Hu J; Alzheimer’s Disease Neuroimaging Initiative. Alteration in temporal-cerebellar effective connectivity can effectively distinguish stable and progressive mild cognitive impairment. Front Aging Neurosci. 2024 Aug 29;16:1442721. doi: 10.3389/fnagi.2024.1442721 PMID: 39267723; PMCID: PMC11390694.
24. Popuri K, Ma D, Wang L, Beg MF. Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer’s disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases. Hum Brain Mapp. 2020;41(14):4127–4147. doi: 10.1002/hbm.25115
25. Lau WK, Leung MK, Lee TM, Law AC. Resting-state abnormalities in amnestic mild cognitive impairment: a meta-analysis. Transl Psychiatry. 2016;6(4):e790. doi: 10.1038/tp.2016.55 26. Gu L, Zhang Z. Exploring Structural and Functional
26. Brain Changes in Mild Cognitive Impairment: A Whole Brain ALE Meta-Analysis for Multimodal MRI. ACS Chem Neurosci. 2019;10(6):2823–2829. doi: 10.1021/acschemneuro.9b00045
27. Zhou B, Yao H, Wang P, Zhang Z, Zhan Y, Ma J, Xu K, Wang L, An N, Liu Y, Zhang X. Aberrant Functional Connectivity Architecture in Alzheimer’s Disease and Mild Cognitive Impairment: A Whole-Brain, Data-Driven Analysis. Biomed Res Int. 2015;2015:495375. doi: 10.1155/2015/495375
28. Dai Z, Lin Q, Li T, Wang X, Yuan H, Yu X, He Y, Wang H. Disrupted structural and functional brain networks in Alzheimer’s disease. Neurobiol Aging. 2019;75:71– 82. doi: 10.1016/j.neurobiolaging.2018.11.005
29. Baldo JV, Katseff S, Dronkers NF. Brain Regions Underlying Repetition and Auditory-Verbal Short-term Memory Deficits in Aphasia: Evidence from Voxel-based Lesion Symptom Mapping. Aphasiology. 2012;26(3-4):338–354. doi: 10.1080/02687038.2011.602391
30. Akhutina T. Luria’s classifcation of aphasias and its theoretical basis. Aphasiology. 2015;30(8):878–897. doi: 10.1080/02687038.2015.1070950
31. Pisoni A, Mattavelli G, Casarotti A, Comi A, Riva M, Bello L, Papagno C. The neural correlates of auditory-verbal short-term memory: a voxel-based lesion-symptom mapping study on 103 patients after glioma removal. Brain Struct Funct. 2019;224(6):2199–2211. doi: 10.1007/s00429-019-01902-z
32. Goerlich KS, Votinov M, Dicks E, Ellendt S, Csukly G, Habel U. Neuroanatomical and Neuropsychological Markers of Amnestic MCI: A Three-Year Longitudinal Study in Individuals Unaware of Cognitive Decline. Front Aging Neurosci. 2017;9:34. doi: 10.3389/fnagi.2017.00034
33. Abraham M, Seidenberg M, Kelly DA, Nielson KA, Woodard JL, Carson Smith J, Durgerian S, Rao SM. Episodic Memory and Hippocampal Volume Predict 5-Year Mild Cognitive Impairment Conversion in Healthy Apolipoprotein epsilon4 Carriers. J Int Neuropsychol Soc. 2020;26(7):733–738. doi: 10.1017/S1355617720000181
34. Mistridis P, Krumm S, Monsch AU, Berres M, Taylor KI. The 12 Years Preceding Mild Cognitive Impairment Due to Alzheimer’s Disease: The Temporal Emergence of Cognitive Decline. J Alzheimers Dis. 2015;48(4):1095–1107. doi: 10.3233/JAD-150137
35. Gallucci M, Di Battista ME, Battistella G, Falcone C, Bisiacchi PS, Di Giorgi E. Neuropsychological tools to predict conversion from amnestic mild cognitive impairment to dementia. The TREDEM Registry. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2018;25(4):550–560. doi: 10.1080/13825585.2017.1349869
36. Lopez-Perez J, Garcia-Herranz S, Diaz-Mardomingo MDC. Acquisition and consolidation of verbal learning and episodic memory as predictors of the conversion from mild cognitive impairment to probable Alzheimer’s disease. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn. 2023;30(4):638–653. doi: 10.1080/13825585.2022.2069670
37. Silva D, Guerreiro M, Maroco J, Santana I, Rodrigues A, Bravo Marques J, de Mendonca A. Comparison of four verbal memory tests for the diagnosis and predictive value of mild cognitive impairment. Dement Geriatr Cogn Dis Extra. 2012;2(1):120–131. doi: 10.1159/000336224
38. Petersen RC. Mild cognitive impairment as a diagnostic entity. J Intern Med. 2004;256(3):183–194. doi: 10.1111/j.1365-2796.2004.01388.x
39. Nasreddine ZS, Phillips NA, Bedirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53(4):695–699. doi: 10.1111/j.1532-5415.2005.53221.x
40. Whitfield-Gabrieli S, Nieto-Castanon A. Conn: a functional connectivity toolbox for correlated and anticorrelated brain networks. Brain Connect. 2012;2(3):125–141. doi: 10.1089/brain.2012.0073
41. Nieto-Castanon A, Whitfeld-Gabrieli S. CONN functional connectivity toolbox: RRID SCR_009550, release 22. 2022. doi: 10.56441/hilbertpress.2246.5840
42. Desikan RS, Segonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31(3):968–980. doi: 10.1016/j.neuroimage.2006.01.021
43. Counts SE, Ikonomovic MD, Mercado N, Vega IE, Mufson EJ. Biomarkers for the Early Detection and Progression of Alzheimer’s Disease. Neurotherapeutics. 2017;14(1):35–53. doi: 10.1007/s13311-016-0481-z
44. Li RX, Ma YH, Tan L, Yu JT. Prospective biomarkers of Alzheimer’s disease: A systematic review and meta-analysis. Ageing Res Rev. 2022;81:101699. doi: 10.1016/j.arr.2022.101699
45. Neznanov NG, Ananyeva NI, Zalutskaya NM, Stulov IK, Galsman IE, Beltceva JA. Visual scale of MRI evaluation of the brain atrophy on early stage of Alzheimer disease. V.M. Bekhterev Review of Psychiatry and Medical Psychology. 2016;(4):61–66. (In Russ.).
46. Pettigrew C, Soldan A, Zhu Y, Wang MC, Brown T, Miller M, Albert M, Team BR. Cognitive reserve and cortical thickness in preclinical Alzheimer’s disease. Brain Imaging Behav. 2017;11(2):357–367. doi: 10.1007/s11682-016-9581-y
47. Perez-Millan A, Borrego-Ecija S, Falgas N, Junca-Parella J, Bosch B, Tort-Merino A, Antonell A, Bargallo N, Rami L, Balasa M, Llado A, Sala-Llonch R, Sanchez-Valle R. Cortical thickness modeling and variability in Alzheimer’s disease and frontotemporal dementia. J Neurol. 2024;271(3):1428–1438. doi: 10.1007/s00415-023-12087-1
48. Harrison TM, La Joie R, Maass A, Baker SL, Swinnerton K, Fenton L, Mellinger TJ, Edwards L, Pham J, Miller BL, Rabinovici GD, Jagust WJ. Longitudinal tau accumulation and atrophy in aging and alzheimer disease. Ann Neurol. 2019;85(2):229–240. doi: 10.1002/ana.25406
49. Insel PS, Young CB, Aisen PS, Johnson KA, Sperling RA, Mormino EC, Donohue MC. Tau positron emission tomography in preclinical Alzheimer’s disease. Brain. 2023;146(2):700–711. doi: 10.1093/brain/awac299
50. Chen GF, Xu TH, Yan Y, Zhou YR, Jiang Y, Melcher K, Xu HE. Amyloid beta: structure, biology and structure-based therapeutic development. Acta Pharmacol Sin. 2017;38(9):1205–1235. doi: 10.1038/aps.2017.28
51. Mandelkow EM, Mandelkow E. Biochemistry and cell biology of tau protein in neurofbrillary degeneration. Cold Spring Harb Perspect Med. 2012;2(7):a006247. doi: 10.1101/cshperspect.a006247
52. Jagust W. Imaging the evolution and pathophysiology of Alzheimer disease. Nat Rev Neurosci. 2018;19(11):687–700. doi: 10.1038/s41583-018-0067-3
53. Lee WJ, Brown JA, Kim HR, La Joie R, Cho H, Lyoo CH, Rabinovici GD, Seong JK, Seeley WW; Alzheimer’s Disease Neuroimaging Initiative. Regional Abeta-tau interactions promote onset and acceleration of Alzheimer’s disease tau spreading. Neuron. 2022;110(12):1932–1943 e1935. doi: 10.1016/j.neuron.2022.03.034
54. Ossenkoppele R, Smith R, Ohlsson T, Strandberg O, Mattsson N, Insel PS, Palmqvist S, Hansson O. Associations between tau, Abeta, and cortical thickness with cognition in Alzheimer disease. Neurology. 2019;92(6):e601-e612. doi: 10.1212/WNL.0000000000006875
55. Penalba-Sanchez L, Oliveira-Silva P, Sumich AL, Cifre I. Increased functional connectivity patterns in mild Alzheimer’s disease: A rsfMRI study. Front Aging Neurosci. 2022;14:1037347. doi: 10.3389/fnagi.2022.1037347
56. Franzmeier N, Rubinski A, Neitzel J, Kim Y, Damm A, Na DL, Kim HJ, Lyoo CH, Cho H, Finsterwalder S, Duering M, Seo SW, Ewers M; Alzheimer’s Disease Neuroimaging Initiative. Functional connectivity associated with tau levels in ageing, Alzheimer’s, and small vessel disease. Brain. 2019;142(4):1093–1107. doi: 10.1093/brain/awz026
57. Sintini I, Graff-Radford J, Jones DT, Botha H, Martin PR, Machulda MM, Schwarz CG, Senjem ML, Gunter JL, Jack CR, Lowe VJ, Josephs KA, Whitwell JL. Tau and Amyloid Relationships with Resting-state Functional Connectivity in Atypical Alzheimer’s Disease. Cereb Cortex. 2021;31(3):1693–1706. doi: 10.1093/cercor/bhaa319
58. Ubellacker DM, Hillis AE. The neural underpinnings of word comprehension and production: The critical roles of the temporal lobes. Handb Clin Neurol. 2022;187:211–220. doi: 10.1016/B978-0-12-823493-8.00013-4
59. Liu J, Spagna A, Bartolomeo P. Hemispheric asymmetries in visual mental imagery. Brain Struct Funct. 2022;227(2):697–708. doi: 10.1007/s00429-021-02277-w
60. Conway BR. The Organization and Operation of Inferior Temporal Cortex. Annu Rev Vis Sci. 2018;4:381– 402. doi: 10.1146/annurev-vision-091517-034202
Review
For citations:
Panikratova Ya.R., Komarova A.Yu., Abdullina E.G., Bozhko O.V., Cherkasov N.S., Gavrilova S.I., Kolykhalov I.V., Lebedeva I.S. Functional Connectivity within Temporal Brain Regions and Conversion to Alzheimer’s Disease in Amnestic Mild Cognitive Impairment. Psychiatry (Moscow) (Psikhiatriya). 2025;23(1):6-17. (In Russ.) https://doi.org/10.30629/2618-6667-2025-23-1-6-17