Clinical Features of Late-Life Depression with Different Biochemical Activity Patterns of Enzymes of Energy, Antioxidant and Glutamate Metabolism
https://doi.org/10.30629/2618-6667-2025-23-3-6-15
Abstract
Background: impaired energy metabolism, glutamate and glutathione metabolism contribute differently to the development of late-life depression. The aim was to study the clinical features of depression in groups of elderly patients identi ed by the activity of platelet enzymes of energy and glutamate metabolism and the antioxidant system of glutathione. Patients and Methods: the study included 52 hospitalized patients (40 women and 12 men) aged 60–86 years with a depressive episode of recurrent depressive disorder (RDD), bipolar disorder (BD) and a single depressive episode (DE) on ICD-10 criteria. The study used clinical, psychometric, biochemical and statistical methods. Psychometric assessments were performed before therapy using the Hamilton Depression and Anxiety Scale (HAMD-17, HARS) and the Mini-Mental State Examination (MMSE). At the same day blood samples were taken to determine the activity of cytochrome c-oxidase (COX), glutathione reductase (GR), glutathione S-transferase (GST), and glutamate dehydrogenase (GDH). Results: patients with decreased activity of energy and antioxidant metabolism enzymes (COX, GR, and GST) were characterized by a predominance of shallow apathetic depressions of a “seasonal” nature with mild cognitive impairment, a later age of manifestation, and a high frequency of cerebrovascular pathology. Patients with different changes in enzyme activity (increased COX, decreased GDH and GST) were characterized by an early onset of the disease, its longer duration, more severe and complex depressions with a pronounced anxiety component. Patients with enzyme activity within control values were more likely to have typical melancholy depressions and the lowest frequency of severe cerebrovascular pathology. Conclusion: a relationship was established between the clinical features of late-life depressions and changes in the activity of enzymes of energy, antioxidant, and glutamate metabolism. It was found that patterns of reduced and different enzyme activity correspond to the clinical parameters of late and early-onset depressions. Thus, clinical heterogeneity of late-life depressions is closely related to different biochemical types of metabolism.
About the Authors
O. B. YakovlevaRussian Federation
Olga B. Yakovleva, Cand. Sci. (Med.), Leading Researcher, the Late Life Psychosis Group, Department of Geriatric Psychiatry
Moscow
T. P. Safarova
Russian Federation
Tatiana P. Safarova, Dr. Sci. (Med.), Leading Researcher, Head of the Late Life Psychosis Group, Department of Geriatric Psychiatry
Moscow
O. K. Savushkina
Russian Federation
Olga K. Savushkina, Cand. Sci. (Biol.), Leading Researcher, Head of the Laboratory of Neurochemistry
Moscow
T. A. Prokhorova
Russian Federation
Tatyana A. Prokhorova, Researcher, Laboratory of Neurochemistry
Moscow
References
1. Horackova K, Kopecek M, Machů V, Kagstrom A, Aarsland D, Motlova LB, Cermakova P. Prevalence of late-life depression and gap in mental health service use across European regions. Eur Psychiatry. 2019;(57):19–25. doi: 10.1016/j.eurpsy.2018.12.002 Epub 2019 Jan 15. PMID: 30658276.
2. Craig Nelson J. Management of Late-Life Depression. Handb Exp Pharmacol. 2019;250:389–413. doi: 10.1007/164_2018_170 PMID: 30294764.
3. Wassink-Vossen S, Oude Voshaar RC, Naarding P, Collard RM. Effectiveness of late-life depression interventions on functional limitations: A systematic review. Int J Ment Health Nurs. 2022;31(4):823–842. doi: 10.1111/inm.12982 Epub 2022 Feb 9. PMID: 35142015; PMCID: PMC9302653.
4. Liegert P, Pabst A, Conrad I, van den Bussche H, Eisele M, Hajek A, Heser K, Kleineidam L, Weyerer S, Werle J, Pentzek M, Weeg D, Mösch E, Wiese B, Oey A, Wagner M, Maier W, König HH, Riedel-Heller SG, Scherer M, Luppa M. The effect of depressive symptoms on quality of life and its different facets in the oldest age population: evidence from the AgeQualiDe prospective cohort study. Qual Life Res. 2024;33(2):387–398. doi: 10.1007/s11136-023-03526-7 Epub 2023 Oct 28. PMID: 37897642; PMCID: PMC10850022.
5. Maier A, Durrant-Finn C, Pabst A, Löbner M, Eisele M, Brettschneider C, Heser K, Kleineidam L, Weyerer S, Werle J, Pentzek M, Fuchs A, Weeg D, Mösch E, Wiese B, Oey A, van den Bussche H, König HH, Wagner M, Maier W, Riedel-Heller SG, Scherer M, Luppa M. Incidence and risk factors of depressive symptoms in the highest age groups and competing mortality risk. Evidence from the AgeCoDe-AqeQualiDe prospective cohort study. J Affect Disord. 2022;308:494–501. doi: 10.1016/j.jad.2022.04.081 Epub 2022 Apr 20. PMID: 35460748.
6. Bakunina N, Pariante CM, Zunszain PA. Immune mechanisms linked to depression via oxidative stress and neuroprogression. Immunology. 2015;144(3):365–373. doi: 10.1111/imm.12443 Epub 2015 Jan 10. PMID: 25580634; PMCID: PMC4557673.
7. Maes M, Galecki P, Chang YS, Berk M. A review on the oxidative and nitrosative stress (O&NS) pathways in major depression and their possible contribution to the (neuro)degenerative processes in that illness. Prog Neuropsychopharmacol Biol Psychiatry. 2011;35(3):676–692. doi: 10.1016/j.pnpbp.2010.05.004 Epub 2010 May 12. PMID: 20471444.
8. Holper L, Ben-Shachar D, Mann JJ. Multivariate meta-analyses of mitochondrial complex I and IV in major depressive disorder, bipolar disorder, schizophrenia, Alzheimer disease, and Parkinson disease. Neuropsychopharmacology. 2019;44(5):837–849. doi: 10.1038/s41386-018-0090-0 Epub 2018 May 16. PMID: 29855563; PMCID: PMC6461987.
9. Sanacora G, Treccani G, Popoli M. Towards a glutamate hypothesis of depression: an emerging frontier of neuropsychopharmacology for mood disorders. Neuropharmacology. 2012;62(1):63–77. doi: 10.1016/j.neuropharm.2011.07.036 Epub 2011 Aug 3. PMID: 21827775; PMCID: PMC3205453.
10. Rădulescu I, Drăgoi AM, Trifu SC, Cristea MB. Neuroplasticity and depression: Rewiring the brain's networks through pharmacological therapy (Review). Exp Ther Med. 2021;22(4):1131. doi: 10.3892/etm.2021.10565 Epub 2021 Aug 5. PMID: 34504581; PMCID: PMC8383338.
11. Alexopoulos GS. Mechanisms and treatment of latelife depression. Transl Psychiatry. 2019;9(1):188. doi: 10.1038/s41398-019-0514-6 PMID: 31383842; PMCID: PMC6683149.
12. Kuo CY, Lin CH, Lane HY. Molecular Basis of LateLife Depression. Int J Mol Sci. 2021;22(14):7421. doi: 10.3390/ijms22147421 PMID: 34299040; PMCID: PMC8303929.
13. Canobbio I. Blood platelets: Circulating mirrors of neurons? Res Pract Thromb Haemost. 2019;3(4):564– 565. doi: 10.1002/rth2.12254 PMID: 31624775; PMCID: PMC6781913.
14. Bouhaddou N, Mabrouk M, Atifi F, Bouyahya A, Zaid Y. The link between BDNF and platelets in neurological disorders. Heliyon. 2024;10(21):e39278. doi: 10.1016/j.heliyon.2024.e39278 PMID: 39568824; PMCID: PMC11577193.
15. Savushkina OK, Tereshkina EB, Prokhorova TA, Safarova TP, Yakovleva OB, Shipilova ES, Burbaeva GSh. Platelet glutathione reductase and glutathione-S-transferase in elderly patients with depression. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(9):79–84. (In Russ.). doi: 10.17116/jnevro202112109179
16. Prokhorova TA, Savushkina OK, Boksha IS, Tereshkina EB, Safarova TP, Yakovleva OB, Kornilov VV, Shipilova ES, Vorobyeva EA, Burbaeva GSh. The link of platelet cytochrome C-oxidase activity with some clinical parameters of depression in elderly patients. S.S. Korsakov Journal of Neurology and Psychiatry. 2021;121(3):86–92. (In Russ.). doi: 10.17116/jnevro202112103186
17. Savushkina OK, Tereshkina EB, Prokhorova TA, Boksha IS, Safarova TP, Yakovleva OB, Kornilov VV, Shipilova ES, Vorobyeva EA, Burbaeva GSh. Evaluation of Platelet Glutamate Dehydrogenase Activity in Late-Life Depressions. Psychiatry (Moscow) (Psikhiatriya). 2021;19(4):34–41. (In Russ.). doi: 10.30629/2618-6667-2021-19-4-34-41
18. Savushkina OK, Boksha IS, Prokhorova TA, Tereshkina EB, Safarova TP, Yakovleva OB, Kornilov VV, Shipilova ES, Vorob'eva EA, Burbaeva GSH. Revealing subgroups of patients with late-onset depression basing on measurements of blood energy-, glutamateand glutathione metabolism enzymatic activities Russian journal of psychiatry. 2021;(5):29–39. (In Russ.). doi: 10.47877/1560-957Х-2021-10504
19. Yuen GS, Bhutani S, Lucas BJ, Gunning FM, AbdelMalak B, Seirup JK, Klimstra SA, Alexopoulos GS. Apathy in late-life depression: common, persistent, and disabling. Am J Geriatr Psychiatry. 2015;23(5):488–94. doi: 10.1016/j.jagp.2014.06.005 Epub 2014 Jun 26. PMID: 25047306; PMCID: PMC4277500.
20. Montoya-Murillo G, Ibarretxe-Bilbao N, Peña J, Ojeda N. The impact of apathy on cognitive performance in the elderly. Int J Geriatr Psychiatry. 2019;34(5):657–665. doi: 10.1002/gps.5062 Epub 2019 Feb 28. PMID: 30672026; PMCID: PMC6594084.
21. Cooper JA, Arulpragasam AR, Treadway MT. Anhedonia in depression: biological mechanisms and computational models. Curr Opin Behav Sci. 2018;22:128–135. doi: 10.1016/j.cobeha.2018.01.024 PMID: 29503842; PMCID: PMC5828520.
22. Vares EA, Salum GA, Spanemberg L, Caldieraro MA, Fleck MP. Depression Dimensions: Integrating Clinical Signs and Symptoms from the Perspectives of Clinicians and Patients. PLoS One. 2015;10(8): e0136037. doi: 10.1371/journal.pone.0136037
23. Петелин ДС, Байрамова СП, Сорокина ОЮ, Нийноя ИНВ, Локшина АБ, Волель БА. Апатия, ангедония и когнитивная дисфункция: общие симптомы депрессии и неврологической патологии. Неврология, нейропсихиатрия, психосоматика. 2022;14(5):96–102. doi: 10.14412/2074-2711-2022-5-96-102 Petelin DS, Bajramova SP, Sorokina OYu, Niinoja INV, Lokshina AB, Volel BA. Apathy, anhedonia and cognitive dysfunction: common symptoms of depression and neurological disorders Neurology, Neuropsychiatry, Psychosomatics. 2022;14(5):96–102. (In Russ.). doi: 10.14412/2074-2711-2022-5-96-102
24. Fahed M, Steffens DC. Apathy: Neurobiology, Assessment and Treatment. Clin Psychopharmacol Neurosci. 2021;19(2):181–189. doi: 10.9758/cpn.2021.19.2.181 PMID: 33888648; PMCID: PMC8077060.
25. Taylor WD, Aizenstein HJ, Alexopoulos GS. The vascular depression hypothesis: mechanisms linking vascular disease with depression. Mol Psychiatry. 2013;18(9):963–74. doi: 10.1038/mp.2013.20 Epub 2013 Feb 26. PMID: 23439482; PMCID: PMC3674224.
26. Jellinger KA. The heterogeneity of late-life depression and its pathobiology: a brain network dysfunction disorder. J Neural Transm (Vienna). 2023;130(8):1057–1076. doi: 10.1007/s00702-023-02648-z Epub 2023 May 5. PMID: 37145167; PMCID: PMC10162005.
27. Kim YK, Han KM. Neural substrates for late-life depression: A selective review of structural neuroimaging studies. Prog Neuropsychopharmacol Biol Psychiatry. 2021;104:110010. doi: 10.1016/j.pnpbp.2020.110010 Epub 2020 Jun 13. PMID: 32544600.
28. Lee MT, Peng WH, Kan HW, Wu CC, Wang DW, Ho YC. Neurobiology of Depression: Chronic Stress Alters the Glutamatergic System in the Brain-Focusing on AMPA Receptor. Biomedicines. 2022;10(5):1005. doi: 10.3390/biomedicines10051005 PMID: 35625742; PMCID: PMC9138646.
29. McIntyre RS, Jain R. Glutamatergic Modulators for Major Depression from Theory to Clinical Use. CNS Drugs. 2024 Aug 16. doi: 10.1007/s40263-024-01114-y Epub ahead of print. PMID: 39150594.
30. Shipilova ES. Clinical Features of Bipolar Disorder in Elderly In-Patients. Psychiatry (Moscow) (Psikhiatriya) 2019;7(2):6–15. (In Russ.). doi: 10.30629/2618-6667-2019-17-2-6-15
31. Coryell W, Fiedorowicz J, Solomon D, Endicott J. Age transitions in the course of bipolar I disorder. Psychol Med. 2009;39(8):1247–52. doi: 10.1017/S0033291709005534 Epub 2009 Apr 1. PMID: 19335937; PMCID: PMC3551474.
Review
For citations:
Yakovleva O.B., Safarova T.P., Savushkina O.K., Prokhorova T.A. Clinical Features of Late-Life Depression with Different Biochemical Activity Patterns of Enzymes of Energy, Antioxidant and Glutamate Metabolism. Psychiatry (Moscow) (Psikhiatriya). 2025;23(3):6-15. (In Russ.) https://doi.org/10.30629/2618-6667-2025-23-3-6-15