Preview

ПСИХИАТРИЯ

Расширенный поиск

Interactions between Microglia and Oligodendrocytes in the Caudate Nucleus in Attack-like Progressive Schizophrenia

https://doi.org/10.30629/2618-6667-2025-23-3-42-53

Аннотация

Background: previously, the authors found ultrastructural pathology of oligodendrocytes in contact with microglia in the white matter of the prefrontal cortex in attack-like progressive schizophrenia. Aim of the study: to determine ultrastructural changes in microglia and oligodendrocytes in contact with each other and to analyze correlations between ultrastructural components of microglia and oligodendrocytes in the caudate nucleus of attack-like-progressive schizophrenia compared to controls. Material and Methods: an electron microscopic morphometric study of microglia and oligodendrocytes in contact with each other was performed in autopsy head of the caudate nucleus from the left hemisphere in 10 cases of attack-like progressive schizophrenia and 20 controls without mental pathology. Group comparisons were made using ANCOVA and Pearson correlation analysis. Results: we found decreased volume fraction (Vv) and the number of mitochondria in microglia and oligodendrocytes, decreased area of microglia and increased Vv of heterochromatin and area of vacuoles of endoplasmic reticulum in oligodendrocytes in schizophrenia compared to controls. The area of microglia correlates positively with the areas of oligodendrocyte cytoplasm and mitochondria in oligodendrocytes in the schizophrenia group but not in the control group. The areas of oligodendrocytes, microglia and of their nuclei correlate positively with age at onset of disease. Vv and number of mitochondria in microglia correlate positively with the same parameters in oligodendrocytes in the control group, but not in the schizophrenia group. Vv and number of mitochondria in microglia correlate negatively with the perimeter of heterochromatin in oligodendrocytes in the schizophrenia group. Conclusion: The obtained results showed reduced microglial reactivity in the caudate nucleus in attack-like progressive schizophrenia. Dystrophy of oligodendrocytes in schizophrenia is associated with a decrease in the size of microglia, a deficiency of mitochondria in microglia and oligodendrocytes, and disrupted bioenergetics coupling between microglia and oligodendrocytes. Dystrophic changes in microglia and oligodendrocytes in the caudate nucleus in attack-like progressive schizophrenia may be associated with dysontogenesis.

Об авторах

O. V. Vikhreva
FSBSI “Mental Health Research Center”
Россия

Olga V. Vikhreva, Cand. Sci. (Biol.), Senior Researcher, Laboratory of Clinical Neuropathology
Moscow



V. I. Rakhmanova
FSBSI “Mental Health Research Center”
Россия

Valentina I. Rakhmanova, Engineer, Laboratory of Clinical Neuropathology
Moscow



N. A. Uranova
FSBSI “Mental Health Research Center”
Россия

Natalya A. Uranova, Dr. Sci. (Med.), Head of Laboratory, Laboratory of Clinical Neuropathology
Moscow



Список литературы

1. Eltokhi A, Santuy A, Merchan-Perez A, Sprengel R.Glutamatergic Dysfunction and Synaptic Ultrastructural Alterations in Schizophrenia and Autism Spectrum Disorder: Evidence from Human and Rodent Studies. Int J Mol Sci. 2020;22(1):59. doi: 10.3390/ijms22010059

2. Roberts RC, McCollum LA, Schoonover KE, Mabry SJ, Roche JK, Lahti AC. Ultrastructural evidence for glutamatergic dysregulation in schizophrenia. Schizophr Res. 2022;249:4–15. doi: 10.1016/j.schres.2020.01.016

3. Kolomeets NS, Uranova NA. Reduced Number Density of Oligodendrocytes and Oligodendrocyte Clusters in the Head of the Caudate Nucleus in Schizophrenia. Neurosci Behav Physiol. 2023;53:1120–1127).

4. Uranova NA The neuropathology of schizophrenia. In book: “Schizophrenia” — Gorodets Publication house. 2024;4:397–421. ISBN 978-5-907762-45-9

5. Fields RD. White matter in learning, cognition and psychiatric disorders. Trends Neurosci. 2008;31(7):361–370. doi: 10.1016/j.tins.2008.04.001

6. Zhou Y, Zhang J. Neuronal activity and remyelination: new insights into the molecular mechanisms and therapeutic advancements. Front Cell Dev Biol.2023;11:1221890. doi: 10.3389/fcell.2023.1221890

7. Vanes LD, Mouchlianitis E, Barry E, Patel K, Wong K, Shergill SS. Cognitive correlates of abnormal myelination in psychosis. Sci Rep. 2019;9(1):5162. doi: 10.1038/s41598-019-41679-z

8. van Timmeren T, van de Vijver I, de Wit S. Cortico-striatal white-matter connectivity underlies the ability to exert goal-directed control. Eur J Neurosci. 2024;60(4):4518–4535. doi: 10.1111/ejn.16456

9. Kotz SA, Anwander A, Axer H, Knösche TR. Beyond cytoarchitectonics: the internal and external connectivity structure of the caudate nucleus. PLoS One. 2013;8(7):e70141.

10. Driscoll ME, Bollu PC, Tadi P. Neuroanatomy, Nucleus Caudate. 2023 Jul 24. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2025 Jan–.PMID: 32491339.

11. Yang KC, Yang BH, Liu MN, Liou YJ, Chou YH. Cognitive impairment in schizophrenia is associated with prefrontal-striatal functional hypoconnectivity and striatal dopaminergic abnormalities. J Psychopharmacol. 2024;38(6):515–525. doi: 10.1177/02698811241257877

12. Vostrikov VM, Uranova NA. Reduced density of oligodendrocytes and oligodendrocyte clusters in the caudate nucleus in major psychiatric illnesses. Schizophr Res. 2020;215:211–216. doi: 10.1016/j.schres.2019.10.027

13. Kolomeets NS, Uranova NA. Reduced Number Density of Oligodendrocytes and Oligodendrocyte Clusters in the Head of the Caudate Nucleus in Schizophrenia. Neurosci Behav Physiol. 2023;53:1120–1127. doi: 10.1007/s11055-023-01509-2

14. Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rachmanova VI, Orlovskaya DD. Ultrastructural pathology of myelinated fibers in schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2013;113(9):63–69. (In Russ.). PMID: 24107883.

15. Uranova NA, Kolomeets NS, Vikhreva OV, Zimina IS, Rakhmanova VI, Orlovskaya DD. Ultrastructural changes of myelinated fibers in the brain in continuous and attack-like paranoid schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry 2017;117(2):104–109. (In Russ.). doi: 10.17116/jnev-ro201711721104-10916

16. Uranova N, Orlovskaya D, Vikhreva O, Zimina I, Kolomeets N, Vostrikov V, Rachmanova V. Electron microscopy of oligodendroglia in severe mental illness. Brain Res Bull. 2001;55(5):597–610. doi: 10.1016/s0361-9230(01)00528-7

17. Hagemeyer N, Hanft KM, Akriditou MA, Unger N, Park ES, Stanley ER, Staszewski O, Dimou L, Prinz M. Microglia contribute to normal myelinogenesis and to oligodendrocyte progenitor maintenance during adulthood. Acta Neuropathol. 2017;134(3):441–458. doi: 10.1007/s00401-017-1747-1

18. McNamara NB, Munro DAD, Bestard-Cuche N, Uyeda A, Bogie JFJ, Hoffmann A, Holloway RK, Molina-Gonzalez I, Askew KE, Mitchell S, Mungall W, Dodds M, Dittmayer C, Moss J, Rose J, Szymkowiak S, Amann L, McColl BW, Prinz M, Spires-Jones TL, Stenzel W, Horsburgh K, Hendriks JJA, Pridans C, Muramatsu R, Williams A, Priller J, Miron VE. Microglia regulate central nervous system myelin growth and integrity. Nature. 2023;613(7942):120–129. doi: 10.1038/s41586-022-05534-y

19. Zhuo C, Tian H, Song X, Jiang D, Chen G, Cai Z, Ping J, Cheng L, Zhou C, Chen C. Microglia and cognitive impairment in schizophrenia: translating scientific progress into novel therapeutic interventions. Schizophrenia (Heidelb). 2023;9(1):42. doi: 10.1038/s41537-023-00370-z

20. Miron VE, Boyd A, Zhao JW, Yuen TJ, Ruckh JM, Shadrach JL, van Wijngaarden P, Wagers AJ, Williams A, Franklin RJM, Ffrench-Constant C. M2 microglia and macrophages drive oligodendrocyte differentiation during CNS remyelination. Nat Neurosci. 2013;16(9):1211–1218. doi: 10.1038/nn.3469

21. Adorjan I, Sun B, Feher V, Tyler T, Veres D, Chance SA, Szele FG. Evidence for Decreased Density of Calretinin-Immunopositive Neurons in the Caudate Nucleus in Patients With Schizophrenia. Front Neuroanat. 2020;14:581685. doi: 10.3389/fnana.2020.581685

22. Uranova NA, Vikhreva OV, Rakhmanova VI. Ultrastructural disturbances in microglia-neuron interactions in the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci. 2024 Dec 28. Online ahead of print. doi: 10.1007/s00406-024-01956-z

23. Vikhreva OV, Rakhmanova VI, Uranova NA. Microglia-neuron interactions in the caudate nucleus in different course of schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry. 2024;124(7):154–164. (In Russ.). doi: 10.17116/jnevro2024124071154

24. Kung L, Roberts RC. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse. 1999;31(1):67–75. doi: 10.1002/(SICI)1098-2396(199901)31:1 < 67::AID-SYN9 > 3.0.CO;2-#

25. Müller N. Inflammation in Schizophrenia: Pathogenetic Aspects and Therapeutic Considerations. Schizophr Bull. 2018;44(5):973–982. doi: 10.1093/schbul/sby024

26. Wierzba-Bobrowicz T, Lewandowska E, Kosno-Kruszewska E, Lechowicz W, Pasennik E, Schmidt-Sidor B. Degeneration of microglial cells in frontal and temporal lobes of chronic schizophrenics. Folia Neuropathol. 2004;42(3):157–165.

27. Sharikova AV, Quaye E, Park JY, Maloney MC, Desta H, Thiyagarajan R, Seldeen KL, Parikh NU, Sandhu P, Khmaladze A, Troen BR, Schwartz SA, Mahajan SD. Methamphetamine Induces Apoptosis of Microglia via the Intrinsic Mitochondrial-Dependent Pathway. J Neuroimmune Pharmacol. 2018;13(3):396–411. doi: 10.1007/s11481-018-9787-4

28. Schoenfeld R, Wong A, Silva J, Li M, Itoh A, Horiuchi M, Itoh T, Pleasure D, Cortopassi G. Oligoden- droglial differentiation induces mitochondrial genes and inhibition of mitochondrial function represses oligodendroglial differentiation. Mitochondrion. 2010;10(2):143–50. doi: 10.1016/j.mito.2009.12.141

29. Roberts RC. Mitochondrial dysfunction in schizophrenia: With a focus on postmortem studies. Mitochondrion. 2021Jan;56:91–101. doi: 10.1016/j.mito.2020.11.009

30. Katsel P, Davis KL, Haroutunian V. Variations in myelin and oligodendrocyte-related gene expression across multiple brain regions in schizophrenia: a gene ontology study. Schizophr Res. 2005;79(2–3):157–173. doi: 10.1016/j.schres.2005.06.007

31. Gouvêa-Junqueira D, Falvella ACB, Antunes ASLM, Seabra G, Brandão-Teles C, Martins-de-Souza D, Crunfti F. Novel Treatment Strategies Targeting Myelin and Oligodendrocyte Dysfunction in Schizophrenia. Front Psychiatry. 2020;11:379. doi: 10.3389/fp-syt.2020.00379

32. Li M, Xiao L, Chen X. Histone Acetylation and Methylation Underlie Oligodendroglial and Myelin Susceptibility in Schizophrenia. Front Cell Neurosci. 2022;16:823708. doi: 10.3389/fncel.2022.823708

33. Chen YZ, Zhu XM, Lv P, Hou XK, Pan Y, Li A, Du Z, Xuan JF, Guo X, Xing JX, Liu K, Yao J. Association of histone modification with the development of schizophrenia. Biomed Pharmacother. 2024;175:116747. doi: 10.1016/j.biopha.2024.116747

34. Uranova NA, Vikhreva OV, Rakhmanova VI, Orlovskaya DD. Ultrastructural pathology of oligodendrocytes adjacent to microglia in prefrontal white matter in schizophrenia. NPJ Schizophr. 2018;4(1):26. doi: 10.1038/s41537-018-0068-2

35. Ovenden ES, McGregor NW, Emsley RA, Warnich L. DNA methylation and antipsychotic treatment mechanisms in schizophrenia: Progress and future directions. Prog Neuropsychopharmacol Biol Psychiatry. 2018;81:38–49. doi: 10.1016/j.pnpbp.2017.10.004

36. Rawani NS, Chan AW, Dursun SM, Baker GB. The Underlying Neurobiological Mechanisms of Psychosis: Focus on Neurotransmission Dysregulation, Neuroinfiammation, Oxidative Stress, and Mitochondrial Dysfunction. Antioxidants (Basel). 2024;13(6):709. doi: 10.3390/antiox13060709

37. Fizíková I, Dragašek J, Račay P. Mitochondrial Dysfunction, Altered Mitochondrial Oxygen, and Energy Metabolism Associated with the Pathogenesis of Schizophrenia. Int J Mol Sci. 2023;24(9):7991. doi: 10.3390/ijms24097991

38. Chu H, Zhu H, Ma J, Jiang Y, Cui C, Yan X, Li Q, Zhang X, Chen D, Li X, Li R. Mitochondrial Dysfunction and Metabolic Indicators in Patients with Drug-Naive First-Episode Schizophrenia: A Case-Control Study. Neuropsychiatr Dis Treat. 2024;20:2433–2442. doi: 10.2147/NDT.S501527

39. Panizzutti B, Bortolasci CC, Spolding B, Kidnapillai S, Connor T, Martin SD, Truong TTT, Liu ZSJ, Gray L, Kowalski GM, McGee SL, Kim JH, Berk M, Walder K. Effects of antipsychotic drugs on energy metabolism. Eur Arch Psychiatry Clin Neurosci. 2024;274(5):1125–1135. doi: 10.1007/s00406-023-01727-2

40. Bartal G, Yitzhaky A, Segev A, Hertzberg L. Multiple genes encoding mitochondrial ribosomes are downregulated in brain and blood samples of individuals with schizophrenia. World J Biol Psychiatry. 2023;24(9):829–837. doi: 10.1080/15622975.2023.2211653

41. Chiappelli J, Savransky A, Ma Y, Gao S, Kvarta MD, Kochunov P, Slavich GM, Hong LE. Impact of lifetime stressor exposure on neuroenergetics in schizophrenia spectrum disorders. Schizophr Res. 2024;269:58–63. doi: 10.1016/j.schres.2024.04.027

42. Trumpff C, Monzel AS, Sandi C, Menon V, Klein HU, Fujita M, Lee A, Petyuk VA, Hurst C, Duong DM, Seyfried NT, Wingo AP, Wingo TS, Wang Y, Thambisetty M, Ferrucci L, Bennett DA, De Jager PL, Picard M. Psychosocial experiences are associated with human brain mitochondrial biology. Proc Natl Acad Sci USA. 2024;121(27):e2317673121. doi: 10.1073/pnas.2317673121

43. Bahlinger K, Lincoln TM, Clamor A. Do deficits in subjective stress recovery predict subsequent stress sensitivity and symptoms in schizophrenia spectrum disorders? Schizophr Res. 2024;264:170–177. doi: 10.1016/j.schres.2023.12.021

44. Sullivan CR, O'Donovan SM, McCullumsmith RE, Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol Psychiatry. 2018;83(9):739–750. doi: 10.1016/j.biopsych.2017.10.014

45. Pruett BS, Meador-Woodruff JH. Evidence for altered energy metabolism, increased lactate, and decreased pH in schizophrenia brain: A focused review and meta-analysis of human postmortem and magnetic resonance spectroscopy studies. Schizophr Res. 2020;223:29–42. doi: 10.1016/j.schres.2020.09.003

46. Prince JA, Blennow K, Gottfries CG, Karlsson I, Oreland L. Mitochondrial function is differentially altered in the basal ganglia of chronic schizophrenics. Neuropsychopharmacology. 1999;21(3):372–379. doi: 10.1016/S0893-133X(99)00016-0

47. Smesny S, Rosburg T, Nenadic I, Fenk KP, Kunstmann S, Rzanny R, Volz HP, Sauer H. Metabolic mapping using 2D 31P-MR spectroscopy reveals frontal and thalamic metabolic abnormalities in schizophrenia. Neuroimage. 2007;35(2):729–37. doi: 10.1016/j.neuroimage.2006.12.023

48. Burbaeva GSh, Boksha IS, Tereshkina EB, Savushkina OK, Starodubtseva LI, Turishcheva MS, Mukaetova-Ladinska E. Systemic neurochemical alterations in schizophrenic brain: glutamate metabolism in focus. Neurochem Res. 2007;32(9):1434–1444. doi: 10.1007/s11064-007-9328-7

49. Roberts RC. Mitochondrial dysfunction in schizophrenia. With a focus on postmortem studies. Mitochondrion. 2021;56:91–101. doi: 10.1016/j.mito.2020.11

50. Buchsbaum MS, Haier RJ, Potkin SG, Nuechterlein K, Bracha HS, Katz M, Lohr J, Wu J, Lottenberg S, Jerabek PA, Trenary M, Tafalla R, Reynolds C, Bunney WE. Fontostriatal disorder of cerebral metabolism in never-medicated schizophrenics. Arch Gen Psychiatry. 1992;49:935–942. doi: 10.1001/arch-psyc.1992.0182012002300

51. Siegel BV Jr., Buchsbaum MS, Bunney WE Jr, Gottschalk LA, Haier RJ, Lohr JB, Lottenberg S, Najafi A, Nuechterlein KH, Potkin SG. Cortical-striatal-thalamic circuits and brain glucose metabolic activity in 70 unmedicated male schizophrenic patients. Am J Psychiatry. 1993;150(9):1325–1336. doi: 10.1176/ajp.150.9.1325

52. Srivastava R, Faust T, Ramos A, Ishizuka K, Sawa A. Dynamic Changes of the Mitochondria in Psychiatric Illnesses: New Mechanistic Insights From Human Neuronal Models. Biol Psychiatry. 2018;83(9):751–760. doi: 10.1016/j.biopsych.2018.01.007

53. Archer SL. Mitochondrial dynamics-mitochondrial fission and fusion in human diseases. N Engl J Med. 2013;369(23):2236–2251. doi: 10.1056/NEJM-ra1215233

54. Bahlinger K, Lincoln TM, Clamor A. Do deficits in subjective stress recovery predict subsequent stress sensitivity and symptoms in schizophrenia spectrum disorders? Schizophr Res. 2024;264:170–177. doi: 10.1016/j.schres.2023.12.021

55. Weinberger DR. Future of Days Past: Neurodevelopment and Schizophrenia. Schizophr Bull. 2017;43(6):1164–1168. doi: 10.1093/schbul/sbx118

56. Birnbaum R, Weinberger DR. The Genesis of

57. Schizophrenia: An Origin Story. Am J Psychiatry. 2024;181(6):482–492. doi: 10.1176/appi.ajp.20240305

58. Salazar de Pablo G, Rodriguez V, Besana F, Civardi SC, Arienti V, Maraña Garceo L, Andrés-Camazón P, Catalan A, Rogdaki M, Abbott C, Kyriakopoulos M, Fusar-Poli P, Correll CU, Arango C. Umbrella Review: Atlas of the Meta-Analytical Evidence of Early-Onset Psychosis. J Am Acad Child Adolesc Psychiatry. 2024;63(7):684–697. doi: 10.1016/j.jaac.2023.10.016

59. Solana C, Pereira D, Tarazona R. Early Senescence and Leukocyte Telomere Shortening in SCHIZOPHRENIA: A Role for Cytomegalovirus Infection? Brain Sci. 2018;8(10):188. doi: 10.3390/brainsci8100188

60. Sui YV, Bertisch H, Goff DC, Samsonov A, Lazar M. Quantitative magnetization transfer and g-ratio imaging of white matter myelin in early psychotic spectrum disorders. Mol Psychiatry. 2025 Jan 8. doi: 10.1038/s41380-024-02883-0

61. Xu P, Yu Y, Wu P. Role of microglia in brain development after viral infection. Front Cell Dev Biol. 2024;12:1340308. doi: 10.3389/fcell.2024.1340308

62. Schulmann A, Ryu E, Goncalves V, Rollins B, Christiansen M, Frye MA, Biernacka J, Vawter MP. Novel Complex Interactions between Mitochondrial and Nuclear DNA in Schizophrenia and Bipolar Disorder. Mol Neuropsychiatry. 2019;5(1):13–27. doi: 10.1159/000495658

63. Suárez-Méndez S, García-de la Cruz DD, Tovilla-Zárate CA, Genis-Mendoza AD, Ramón-Torres RA, González-Castro TB, Juárez-Rojop IE. Diverse roles of mtDNA in schizophrenia: Implications in its pathophysiology and as biomarker for cognitive impairment. Prog Biophys Mol Biol. 2020;155:36–41. doi: 10.1016/j.pbiomolbio.2020.04.004

64. Venkatasubramanian G, Gangadhar BN, Jayakumar PN, Janakiramaiah N, Keshavan MS. Reduced Caudate Volume in Never-Treated Schizophrenia: Evidence for Neurodevelopmental Etiopathogenesis. Indian J Psychiatry. 2003;45(2):20–26. PMID: 21206829.


Рецензия

Для цитирования:


Vikhreva O.V., Rakhmanova V.I., Uranova N.A. Interactions between Microglia and Oligodendrocytes in the Caudate Nucleus in Attack-like Progressive Schizophrenia. ПСИХИАТРИЯ. 2025;23(3):42-53. https://doi.org/10.30629/2618-6667-2025-23-3-42-53

For citation:


Vikhreva O.V., Rakhmanova V.I., Uranova N.A. Interactions between Microglia and Oligodendrocytes in the Caudate Nucleus in Attack-like Progressive Schizophrenia. Psychiatry (Moscow) (Psikhiatriya). 2025;23(3):42-53. (In Russ.) https://doi.org/10.30629/2618-6667-2025-23-3-42-53

Просмотров: 3


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)