The possible role of copy number of ribosomal genes in the development of mental disorders
Abstract
The objective of the work was to present the current state and prospects of the research of biological of biological phenomena being examined by the authors, which underlie the pathogenesis of mental disorders, including upregulated protein synthesis (translation process) on the ribosomes.
Material and methods: the review is based on previous articles published by the authors of this review and other domestic and foreign scientists.
Results. Ribosomes are cytoplasmic organelles that perform protein biosynthesis on messenger RNA. The major components of the ribosome are ribosomal RNA (rRNA). Human ribosomal genes code for the molecules of 18S, 5.8S, and 28S rRNA. In human genome, ribosomal genes (RG) form clusters of tandem repeats on the five pairs of acrocentric chromosomes termed rDNA. The rDNA copy number per diploid genome in different subjects varies from 250 to 670 copies with a mean of 450. The quantity of ribosomal genes in the individual genomelimits thelevel of total translation (protein biosynthesis) and has various phenotypic manifestations. The review considers possible mechanisms of influence of the copy number of ribosomal genes on the development of such mental disorders as schizophrenia and autistic spectrum disorders (ASD).
Conclusions: the copy number of transcribed ribosomal genes (genes for rRNA) is a possible factor of pathogenesis of such mental disorders as schizophrenia and ASD. The facts of high RG copy number in schizophrenia andlow RG copy number in rheumatoid arthritis can explain the well-known phenomenon of negative comorbidity of these two conditions. A hypothesis was put forward that alow copy number of transccribed RG in an individual genome can neutralize the impact of the mutations in mTOR signalling pathway, which evoke syndromal forms of autism, and various ways to check up the hypothesis were suggested.
Keywords
About the Authors
L. N. PorokhovnikRussian Federation
Porokhovnik Lev N. - candidate of biological sciences, laboratory of molecular biology.
Moscow.
N. N. Veiko
Russian Federation
Veiko Nataliya N. - docteur es sciences, laboratory of molecular biology.
Moscow.
E. S. Ershova
Russian Federation
Ershova Elisaveta S. - candidate of biological sciences, laboratory of molecular biology.
Moscow.
G. P. Kostyuk
Russian Federation
Kostyuk Georgy P. - PhD, MD, professor, Head of Psychiatric Clinical Hospital № 1 name after N.A. Alekseev.
Moscow.
N. V. Zakharova
Russian Federation
Zakharova Nataliya V. - candidate of medical sciences.
Moscow.
N. L. Gorbachevskaya
Russian Federation
Gorbachevskaya Nataliya L. - docteur es sciences, professor, laboratory of neurophysiology.
Moscow.
S. V. Kostyuk
Russian Federation
Kostyuk Svetlana V. - docteur es sciences, laboratory of molecular biology
Moscow.
References
1. Lyapunova N.A., Veiko N.N. Ribosomal genes in the human genome: identification of four fractions, their organization in the nucleolus and metaphase chromosomes. Russ. J. Genet. 2010;46(9): 1205-1209 (In Russ.)
2. Santoro R. The silence of the ribosomal RNA genes. Cell Mol. Life Sci. 2005;62(18):2067-2079.
3. Roussel P., Hernandez-Verdun D. Identification of Ag-NOR proteins, markers of proliferation related to ribosomal gene activity. Exp. Cell Res. 1994;214(2):465-472.
4. Roussel P., Andre C., Comai L., Hernandez-Verdun D. The rDNA transcription machinery is assembled during mitosis in active NORs and absent in inactive NORs. J. Cell Biol. 1996;133(2):235- 246.
5. Sirri V., Roussel P., Hernandez-Verdun D. The AgNOR proteins: qualitative and quantitative changes during the cell cycle. Micron. 2000;31(2):121-126.
6. Howell W.M., Black D.A. Controlled silver-staining of nucleolus organizer regions with a protective colloidal developer: a 1-step method. Experientia. 1980;36:1014-1015.
7. Veiko N.N., Liapunova N.A., Bogush A.V., Tsvetkova T.G., Gromova E.V. Determination of the number of ribosomal genes in individual human genomes. Comparison of the results of molecular and cytogenetic analysis. Mol. Biol. (Mosk.) (In Russ.) 1996;30(5): 1076-1085.
8. Lyapunova N.A., Egolina N.A., Tsvetkova T.G., Veiko N.N., Kravets-Mandron I.A., Gromova E.V., Kosyakova N.V., Viktorov V.V. Cytogenetics of the nucleolus organizer regions (NORs) of human chromosomes: results of molecular and cytogenetic analyses. Biol. Membrany. 2001;18(3):189-199.
9. Vejko N.N., Ljapunova N.A. Harakteristika chetyreh frakcij ribosomnogo povtora genoma cheloveka, i ih organizacija v jadrah limfocitov. Citologija. 2005;47(9):800-801 (In Russ.)
10. Larson D.E., Zahradka P., Sells B.H. Control points in eukaryotic ribosome biogenesis. Biochem. Cell BioL 1991;69(1):5—22.
11. Sirri V., Urcuqui-Inchima S., Roussel P., Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem. Cell Biol. 2008;129(1):13-31.
12. Liapunova N.A., Egolina N.A., Tsvetkova T.G., Veiko N.N. et al Ribosomal genes in the human genome: contribution to genetic individuality and phenotypic manifestation of gene dosage. Vestn. Ross. Akad. Med. Nauk. 2000;5:19-23.
13. Voronina V.N. Aktuafnost' ribosomnyh genovi sostojanie fizicheskogo razvitija detej na pervom godu zhizni. Zdravoohranenie Bashkortostana. 2000; Specvypusk 2:207-208 (In Russ.)
14. Neudakhin E.V., Korotkii N.G., Lyapunova N.A., Egolina N.A., Kosyakova N.V., Botkina A.S., Kravets I.A., Significance of genome dose of active ribosomal genes for assessment of forecast and degree of consequences of atopic dermatitis. Detskaya Bot'nitsa 2008;3:31-35 (In Russ.)
15. Malinovskaya E.M., Smirnova T.O., Egolina N.A., Tsvetkova T.G. et al. Changes in human ribosomal genes ensemble with ageing. Medical Genetics. 2008;7(2):10-16.
16. Lyapunova N.A., Porokhovnik L.N., Kosyakova N.V., Mandron I.A., Tsvetkova T.G. Effects of the copy number of ribosomal genes (genes for rRNA) on viability of subjects with chromosomal abnormalities. Gene. 6;ll:47-53.
17. Veiko N.N., Terekhov S.M., Shubaeva N.O., Simirnova T.D., Ivanova S.M. et al. Early and late responses to oxidative stress in human dermal fibroblasts of healthy donors and rheumatoid arthritis patients. Relationship between the cell death rate and the genomic dosage of active ribosomal genes. Mol. Biol. (Moscow). 2005;39(2):264-275.
18. Veiko N.N., Shubaeva N.O., Tsvetkova T.G., Mandron I.A. et al. The peculiarities of quantitative characteristics of the ribosomal gene complex in patient with severe forms of rheumatoid arthritis. Medical Genetics. 2005;4(4):166-167 (In Russ.)
19. Vejko H.H., Kostjuk C.B., Shubaeva N.O., Ivanova S.M., Speranskij A.I. Izmenenie svojstv vnekletochnoj DNK perifericheskoj krovi pri revmatoidnom artrite. Immunologija. 2007;28(3):389- 394 (In Russ.)
20. Gilvarry C.M., Sham P.C., Jones P.B., Cannon M., Wright P., Lewis S.W., Bebbington P., Toone B.K., Murray R.M. Family history of autoimmune diseases in psychosis. Schizophr. Res. 1996;19:3-40.
21. Oken R.J., Schulzer M. At issue: schizophrenia and rheumatoid arthritis: the negative association revisited. Schizophr. Bull. 1999;25:625-638.
22. Gorwood P., Pouchot J., Vinceneux P. Rheumatoid arthritis and schizophrenia: a negative association at a dimensional level. Schizophr. Res. 2004;66:21-29.
23. Eaton W.W., Hayward C., Ram R. Schizophrenia and rheumatoid arthritis: a review. Schizophr. Res. 1992;6:181-192.
24. Eaton W.W., Byrne M., Ewald H., Mors O., Chen C.Y., Agerbo E., Mortensen P.B. Association of schizophrenia and autoimmune diseases:linkage of Danish national registers. Am. J. Psychiatry. 2006;163:521-528.
25. Chestkov I.V., Jestkova E.M., Ershova E.S. et al. Abundance of ribosomal RNA gene copies in the genomes of schizophrenia patients. Schizophr. Res. 2018; pii: S0920-9964(18)30001-X. doi: 10.1016/j.schres.2018.01.001. [Epub ahead of print]
26. Veiko N.N., Egolina N.A., Radzivil G.G. et al. Quantitative analysis of repetitive sequences in human genomic DNA and detection of an elevated ribosomal repeat copy number in patients with schizophrenia (the results of molecular and cytogenetic analysis). Mol. Biol. (Moscow). 2003;37(3):409-419.
27. Porokhovnik L.N., Viktorov V.V., Egolina N.A. et al. Cluster size polymorphism of active human ribosomal genes and simulation of the conditions of its stability through generations. Russ. J. Genet. 2011;47(12):1479-1486. https://doi.org/10.1134/S1022795411120106
28. Torrey E.F., Yolken R.H. The schizophrenia-rheumatoid arthritis connection: infectious, immune, or both? Brain Behav. Immun. 2001;15(4):401-410.
29. Euesden J., Breen G., Farmer A., McGuffin P., Lewis C.M. The relationship between schizophrenia and rheumatoid arthritis revisited: genetic and epidemiological analyses. Am J Med. Genet. В Neuropsychiatr. Genet. 2015;168(2):81-88. doi: 10.1002/ajmg.b.32282
30. Lane M.A., Bailey S.J. Role of retinoid signalling in the adult brain. Prog. Neurobiol. 2005;75(4):275-293.
31. Ransom J., Morgan P.J., McCaffery P.J., Stoney P.N. The rhythm of retinoids in the brain. J. Neurochem. 2014;129(3):366-376. doi: 10.1111/jnc.12620
32. Goodman A.B. Three independentlines of evidence suggest retinoids as causal to schizophrenia. Proc. Natl. Acad. Sci. USA. 1998;95(13):7240-7244.
33. Haybaeck J., Postruznik M., Miller C.L, Dulay J.R., Llenos I.C., Weis S. Increased expression of retinoic acid-induced gene 1 in the dorsolateral prefrontal cortex in schizophrenia, bipolar disorder, and major depression. Neuropsychiatr. Dis. Treat. 2015;11:279-289. doi: 10.2147/NDT.S72536
34. Ludot M., Mouchabac S., Ferreri F. Inter-relationships between isotretinoin treatment and psychiatric disorders: Depression, bipolar disorder, anxiety, psychosis and suicide risks. World J. Psychiatry. 2015;5(2):222-227. doi: 10.5498/wjpv5.i2.222
35. Lerner V., McCaffery P.J., Ritsner M.S. Targeting Retinoid Recep-tors to Treat Schizophrenia: Rationale and Progress to Date. CNS Drugs. 2016;30(4):269-280. doi: 10.1007Д40263-016-0316-9
36. Beehler B.C., Brinckerhoff C.E., Ostrowski J. Selective retinoic acid receptorligands for rheumatoid arthritis. Curr. Opin. Investig. Drugs. 2004;5(11):1153-1157.
37. Nozaki Y., Tamaki C., Yamagata T., Sugiyama M., Ikoma S., Kinoshita K., Funauchi M. All-trans-retinoic acid suppresses interferon-gamma and tumor necrosis factor-alpha; a possible therapeutic agent for rheumatoid arthritis. Rheumatol. Int. 2006;26(9):810-817.
38. Lee J., Kim H.Y., Park S.H. Retinoic acid attenuates rheumatoid inflammation in mice. 3. Immunol. 2012;189(2):1062-1071. doi: 10.4049/jimmunol.1102706
39. Fauber B.P., Rene 0., Deng Y., DeVoss J., Eidenschenk C.f Eve¬rett C., Ganguli A., Gobbi A. et al. Discovery of l-{4-[3-fluoro- 4-((3s,6r)-3-methyl-l,l-dioxo-6-phenyl-[1.2]thiazinan-2-yl- methyl)-phenyl]-piperazin-l-yl}-ethanone (GNE-3500): a potent selective, and orally bioavailable retinoic acid receptor-related orphan receptor C (RORc or RORy) inverse agonist J. Med. Chem. 2015;58(13):5308-5322. doi: 10.1021/acs.jmedchem.5b00597
40. Arroul-Lammali A., Rahal F., Chetouane R., Djeraba Z., Medjeber O., Ladjouze-Rerig A., Touil-Boukoffa C. Ex vivo all-trans retinoic acid modulates NO production and regulates IL-6 effect during rheumatoid arthritis: a study in Algerian patients. Immunopharmacol. Immunotoxicol. 2017;39(2):87-96. doi: 10.1080/08923973.2017.1285919
41. Imaizumi T., Arikawa T., Sato T., Uesato R., Matsumiya T., Yoshi¬da H., Ueno M., Yamasaki S. et al. Involvement of retinoic acid-inducible gene-I in inflammation of rheumatoid fibroblast-like synoviocytes. Clin. Exp. ImmunoL 2008;153(2):240-244. doi: 10.1111/j.l365-2249.2008.03685.x
42. Moon Y.M., Lee J., Lee S.Y. et al. Gene associated with retinoid-interferon-induced mortality 19 attenuates murine autoimmune arthritis by regulation of th l7 and treg cells. Arthritis Rheumatol. 2014;66(3):569-578. doi: 10.1002/art38267
43. Gall B.J., Schroer A.B., Gross J.D., Setola V., Siderovski D.P. Reduction of GPSM3 expression akin to the arthritis-protective SNP rs204989 differentially affects migration in a neutrophil model. Genes Immun. 2016;17(6):321-327. doi: 10.1038/gene.2016.26
44. Paradowska-Gorycka A., Stypinska B., Pawlik A., Romanowska-Prochnicka K., Haladyj E., Manczak M., Olesinska M. R0RC2 Genetic Variants and Serum Levels in Patients with Rheumatoid Arthritis. Int. J. Mol. Sri. 2016;17(4):488. doi: 10.3390/ijmsl7040488
45. Gallone G., Haerty W., Disanto G., Ramagopalan S.V., Ponting C.P., Berlanga-Taylor A. J. Identification of genetic variants affecting vitamin D receptor binding and associations with autoimmune disease. Hum. Mol. Genet. 2017;26(11):2164-2176. doi: 10.1093/hmg/ddx092
46. Datta P.K., Budhiraja S., Reichel R.R., Jacob S.T. Regulation of ribosomal RNA gene transcription during retinoic acid-induced differentiation of mouse teratocarcinoma cells. Exp. Cell. Res. 1997 ;231( 1): 198-205.
47. Lai L, Li Y., Smith J., Sassano A., Uddin S., Parmar S., Tallman M.S., Minucci S., Hay N.. Platanias L.C. Activation of the p70 S6 kinase by all-trans-retinoic acid in acute promyelocyticleukemia cells. Blood. 2005;105(4):1669-1677.
48. Lee S.J., Yang E.K., Kim S.G. Peroxisome proliferator-activated receptor-gamma and retinoic acid X receptor alpha represses the TGFbetal gene via PTEN-mediated p70 ribosomal S6 kinase-1 inhibition: role for Zf9 dephosphorylation. Mol. Pharmacol. 2006;70(l):415-425.
49. Krzyzanowska M., Steiner J., Brisch R. et al. Ribosomal DNA transcription in the dorsal raphe nucleus is increased in residual but not in paranoid schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2015;265(2):117—126. doi: 10.1007/s00406-014-0518-4
50. Topol A., English J.A., Flaherty E. et al. Increased abundance of translation machinery in stem cell-derived neural progenitor cells from four schizophrenia patients. Transl. Psychiatry. 2015;5:e662. doi: 10.1038/tp.2015.118
51. Darby M.M., Yolken R.H., Sabunciyan S. Consistently altered expression of gene sets in postmortem brains of individuals with major psychiatric disorders. Transl. Psychiatry. 2016;6(9):e890. doi: 10.1038/tp.2016.173
52. Ide S., Miyazaki T., Maki H., Kobayashi T. Abundance of ribosomal RNA gene copies maintains genome integrity. Science. 2010;327(5966):693-696. doi: 10.1126/science.1179044
53. Power R.A., Kyaga S., Uher R., MacCabe J.H., Langstrom N., Landen M., McGuffin P., Lewis C.M., Lichtenstein P., Svensson A.C. Fecundity of patients with schizophrenia, autism, bipolar disorder, depression, anorexia nervosa, or substance abuse vs. their unaffected siblings. JAMA Psychiatry. 2013;70(l):22-30. doi: 10.1001/jamapsychiatry.20B.268
54. Paredes S., Maggert K.A. Ribosomal DNA contributes to global chromatin regulation. Proc. Natl. Acad. Sri. USA. 2009;106(42): 17829-17834. doi: 10.1073/pnas.0906811106
55. Chubb J.R., Boyle S., Perry P., Bickmore W.A. Chromatin motion is constrained by association with nuclear compartments in human cells. Curr. Biol. 2002;12(6):439-445.
56. Foltankova V., Legartova S., Kozubek S., Hofer M., Bartova E. DNA-damage response in chromatin of ribosomal genes and the surrounding genome. Gene. 2013;522(2):156-167. doi: 10.1016/j.gene.2013.03.108
57. Kobayashi T. Ribosomal RNA gene repeats, their stability and cellular senescence. Proc. Jpn. Acad. Ser. В Phys. BioL Sri. 2014;90(4): 119-129.
58. Boskovic M., Vovk T., Kores Plesnicar B., Grabnar I. Oxidative stress in schizophrenia. Current Neuropharmacology. 2011;9 (2):301-312.
59. Emiliani F.E., Sedlak T.W., Sawa A. Oxidative stress and schizophrenia: recent breakthroughs from an old story. Curr. Opin. Psychiatry. 2014;27(3):185-190.
60. Jorgensen A., Broedbaek K., Fink-Jensen A. et al. Increased systemic oxidatively generated DNA and RNA damage in schizo¬phrenia. Psychiatry Research. 2013;209(3):417-423.
61. Nishioka N., Arnold S.E. Evidence for oxidative DNA damage in the hippocampus of elderly patients with chronic schizophrenia. Am. J. Ger. Psychiatry. 2004;12:167-175.
62. Sertan Copoglu U., Virit O., Hanifi Kokacya M. et al. Increased oxidative stress and oxidative DNA damage in non-remission schizophrenia patients. Psychiatry Research. 2015;229(l-2):200-205.
63. Raza M.U., Tufan T., Wang Y., Hill C., Zhu M.Y. DNA damage in major psychiatric diseases. Neurotoxicity Research. 2016;30(2):251- 267.
64. Gao R., Penzes P. Common mechanisms of excitatory and inhibitory imbalance in schizophrenia and autism spectrum disorders. Curr. Mol. Med. 2015; 15(2): 146-167.
65. Kelleher R.J., Bear M.F. The autistic neuron: troubled translation? Cell. 2008;D5(3):401-406. doi: 10.1016/j.cell.2008.10.017
66. Chang S., Bray S.M., Li Z., Zarnescu D.C., He C., Jin P., Warren S.T. Identification of small molecules rescuing fragile X syndrome phenotypes in Drosophila. Nat. Chem. Biol. 2008;4(4):256-263. doi: 10.1038/nchembio.78
67. Bey A.L., Jiang Y.H. Overview of mouse models of autism spectrum disorders. Curr. Protoc. Pharmacol. 2014;66:5.66.1-5.66.26. doi: 10.1002/0471141755.ph0566s66
68. Chen J., Lei L, Tian L., Hou F., Roper C., Ge X., Zhao Y., Chen Y., Dong Q., Tanguay R.L., Huang C. Developmental and behavioral alterations in zebrafish embryonically exposed to valproic acid (VPA): An aquatic model for autism. Neurotoxicol. Teratol. 2018;66:8-16. doi: 10.1016/j.ntt2018.01.002
69. Bhattacharya A., Mamcarz M., Mullins C., Choudhury A., Boyle R.G., Smith D.G., Walker D.W., Klann E. Targeting translation control with p70 S6 kinase 1 inhibitors to reverse phenotypes in fragile X syndrome mice. Neuropsychopharmacology. 2016;41(8): 1991-2000.
70. Gkogkas C.G., Khoutorsky A., Ran I., Rampakakis E., Nevarko T., Weatherill D.B., Vasuta C. et al. Autism-related deficits via dysregulated eIF4E-dependent translational control. Nature. 2013;493(7432):371-377. doi: 10.1038/naturell628
71. Buffington S.A., Huang W., Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annu. Rev. Neurosci. 2014;37:17-38. doi: 10.1146/annurev-neuro-071013-014100
72. Powers E.T., Morimoto R.I., Dillin A., Kelly J.W., Balch W.E. Bio-logical and chemical approaches to diseases of proteostasis de-ficiency. Annu. Rev. Biochem. 2009;78:959-991. doi: 10.1146/annurev.biochem.052308.114844
73. Ehninger D., Han S., Shilyansky C., Zhou Y., Li W., David J. Reversal oflearning deficits in a Tsc2+/-mouse model of tuberous sclerosis. Nat. Med. 2009;14(8):843-848. doi: 10.1038/nml788
74. Трифонова E.A., Хлебодарова T.M., Грунтенко H.E. Аутизм как проявление нарушения молекулярных механизмов регуляции развития и функций синапсов. Ваеиловский журнал генетики и селекции. 2016;20(6):959-967. doi: 10.18699/VJ16.217
75. Van Driesche S.J., Martin K.C. New frontiers in RNA transport andlocal translation in neurons. Dev. NeurobioL 2018;78(3):331- 339. doi: 10.1002/dneu.22574
76. Shnayder N.A. Tuberous Sclerosis: Definition, Peculiarities of Clinical Course. International Neurological Journal (Ukraine). 2010;2(32):5-13.
77. Gumbinger C., Rohsbach C.B., Schulze-Bonhage A., Korinthenberg R., Zentner J.f Haffner M., Fauser S. Focal cortical dysplasia: a genotype-phenotype analysis of polymorphisms and mutations in the TSC genes. Epilepsia. 2009;50(6):1396-1408. doi: 10.UH/j.1528-1167.2008.01979.x
78. Kerr L.A., Blute M.L, Ryu J.H., Swensen S.J., Malek R.S. Renal angiomyolipoma in association with pulmonarylymphangio-leiomyomatosis: forme fruste of tuberous sclerosis? Urology. 1993;41(5):440-444.
79. Hannan K.M., Brandenburger Y., Jenkins A., Sharkey K., Cavanaugh A., Rothblum L., Moss T., Poortinga G. et al. mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol. Cell. Biol. 2003;23(23):8862-8877.
80. Lipton J.O., Sahin M. The neurology of mTOR. Neuron. 2014;84(2):275-291. doi: 10.1016/j.neuron.2014.09.034
81. Sato A. mTOR. a potential target to treat autism spectrum disorder. CNS Neurol. Disord. Drug Targets. 2016;15(5):533-543. doi: 10.2174/1871527315666160413120638
82. Meikle L, Pollizzi K., Egnor A., Kramvis I., Lane H.. Sahin M., Kwiatkowski D.J. Response of a neuronal model of tuberous sclerosis to mammalian target of rapamycin (mTOR) inhibitors: effects on mTORCl and Akt signalinglead to improved survival and function. J. Neurosd. 2008;28(21):5422-5432. doi: 10.1523/JNEUR0SCI.0955-08.2008
83. Buchwalter A., Hetzer M.W. Nucleolar expansion and elevated protein translation in premature aging. Nat. Commun. 2017;8(1):328. doi: 10.1038/s41467-017-00322-z
84. Maclnnes A.W. The role of the ribosome in the regulation of longevity and lifespan extension. Wiley Interdisdp. Rev. RNA. 2016;7(2):198-212 doi: 10.1002/wma.l325
85. Tiku V., Jain C., Raz Y., Nakamura S., Heestand B., Liu W., Spath M. et al. Small nucleoli are a cellular hallmark of longevity. Nat. Commun. 2016;8:16083. doi: 10.1038/ncommsl6083
86. Kirkpatrick B.. Messias E., Harvey P.D., Femandez-Egea E., Bowie C.R. Is schizophrenia a syndrome of accelerated aging? Schizophr. Bull. 2008;34(6): 1024-1032.
87. Kochunov P.. Glahn D.C., Rowland L.M., Olvera R.L., Winkler A., Yang Y.H. et aL Testing the hypothesis of accelerated cerebral white matter aging in schizophrenia and major depression. Biol. Psychiatry. 2013;73(5):482-491. doi: 10.1016/j.biopsych.2012.10.002
88. Koutsouleris N.. Davatzikos C., Borgwardt S., Gaser C., Bottlender R., Frodl T., Falkai P. et al. Accelerated brain aging in schizophrenia and beyond: a neuroanatomical marker of psychiatric disorders. Schizophr. Bull. 2014;40(5): 1140-1153. doi: 10.1093/schbul/sbtl42
89. Shivakumar V., Kalmady S.V., Venkatasubramanian G., Ravi V., Gangadhar B.N. Do schizophrenia patients age early? Asian. J. Psychiatr. 2014;10:3-9. doi: 10.1016/j.ajp2014.02.007
90. Schnack H.G., van Haren N.E., Nieuwenhuis M.. Hulshoff H.E., Cahn W., Kahn R.S. Accelerated Brain Aging in Schizophrenia: A Longitudinal Pattern Recognition Study. Am. J. Psychiatry. 2016; 173(6):607-616. doi: 10.1176/appi.ajp2015.15070922
91. Sirri V., Urcuqui-Inchima S., Roussel P., Hernandez-Verdun D. Nucleolus: the fascinating nuclear body. Histochem. Cell. Biol. 2008;129(1):13-31.
92. Antoniali G., Lirussi L, Poletto M„ Tell G. Emerging roles of the nucleolus in regulating the DNA damage response: the non-canonical DNA repair enzyme APEl/Ref-1 as a paradigmatical example. Antioxid. Redox. Signal. 2014;20(4):621-639. doi: 10.1089/ars.2013.5491
Review
For citations:
Porokhovnik L.N., Veiko N.N., Ershova E.S., Kostyuk G.P., Zakharova N.V., Gorbachevskaya N.L., Kostyuk S.V. The possible role of copy number of ribosomal genes in the development of mental disorders. Psychiatry (Moscow) (Psikhiatriya). 2018;(78):89-105. (In Russ.)