Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Parameters of EEG coherence as reflection of brain neuroplasticity in mental pathology (review of literature)

Abstract

The aim of the review is to prove that EEG coherence is a reflection of brain neuroplasticity processes in mental pathology.

Method. Systematic review.

The contents of review: the data is presented on neuroplasticity as one of pathophysiological mechanisms of functional disconnection of brain structures which leads to disorganization of brain functions and is considered as one of basic aspects of pathogenesis of such severe mental disorders as schizophrenia and affective disorders. The specificities of parameters of brain electrical activity — EEG coherence directly reflecting the degree of connections between different cortical regions are described in patients with schizophrenia, depression and a number of other mental disorders. The above data shows that EEG coherence parameters reflected the fine changes of brain functional state, including specific impairments of organization of intracortical neuronal connections in patients with various forms of mental pathology in comparison with the norm. EEG coherence together with other EEG parameters may be used for pathophysiological and differential-diagnostic justifications as well as for prediction of treatment efficiency.

Conclusion. Specific deviations of parameters of EEG coherence in mental patients from norm and their partial normalization in dynamics of treatment allow considering the parameters of EEG coherence as reflection of destructive and reparative processes of neuroplasticity playing the important role in pathogenesis of many severe and socially significant mental disorders, including schizophrenia and depression.

About the Authors

A. F. Iznak
FSBSI “Mental Health Research Centre”
Russian Federation

Iznak Andrey - PhD, doctor of biological sciences. Head of laboratory of neurophysiology.

Moscow.



E. V. Iznak
FSBSI “Mental Health Research Centre”
Russian Federation

Iznak Ekaterina - PhD, candidate of biological sciences, laboratory of neurophysiology.

Moscow.



T. S. Mel’nikova
FSBSI “Mental Health Research Centre”
Russian Federation

Mel'nikova Tatiana - PhD, doctor of biological sciences laboratory of neurophysiology.

Moscow.



References

1. Weinberger D.R., Berman K.F., Suddath R., Torrey E.F. Evidence of dysfunction of a prefrontal-limbic network in schizophrenia: a magnetic resonance imaging and regional cerebral blood flow study of discordant monozygotic twins. Am. J. Psychiatry. 1992; 149(7):890-897. doi: 10.1176/ajp.l49.7.890

2. Andreasen N.C., Paradiso S., O'Leary D.S. «Cognitive dysmetria» as an integrative theory of schizophrenia: a dysfunction in cortical-subcortical-cerebellar circuitry? Schizophr. Bull. 1998;24:203-218. doi: 10.1093/oxfordjournals.schbul.a033321

3. Begre S., Koenig T. Cerebral disconnectivity: an early event in schizophrenia. Neuroscientist. 2008;14(l):19-45. doi: 10.1177/1073858406298391

4. Jacobs B.L., van Praag H., Gage F.H. Depression and the birth and death of brain cells. Am. Sci. 2000;88:340-345.

5. Manji H.K., Duman R.S. Impairments of neuroplasticity and cellular resilience in severe mood disorder: implications for the development of novel therapeutics. PsychopharmacoL Bull. 2001;35:35-49. PMID: 12397885

6. Olie J.-P., Macher J.-P., Costa e Silva J.A eds. Neuroplasticity: a new approach to the pathophysiology of depression. London: Science Press Ltd.; 2004.

7. Noda Y., Nakamura M., Saeki T., Inoue M., Iwanari H., Kasai K. Potentiation of quantitative electroencephalograms following prefrontal repetitive transcranial magnetic stimulation in patients with major depression. Neuroscience Research. 2013;77(1- 2):70-77. doi: 10.1016/j.neures.2013.06.002

8. Muller N.. Schwarz M.J. Schizophrenia as an inflammation-mediated dysbalance of glutamatergic neurotransmission. Neurotox. Res. 2006;10:131-148. PMID: 17062375

9. Maes M., Yirmyia R., Noraberg J„ Brene S., Hibbeln J., Perini G., Kubera M., Bob P., Lerer B., Maj M. The inflammatory & neuro-degenerative (I&ND) hypothesis of depression:leads for future research and new drug developments in depression. Metab. Brain Dis. 2009;24:27-53. doi: 10.1007/s11011-008-9118-1009

10. Muller N., Myint A.-M., Schwarz M.J. Inflammatory biomarkers in depression. Neurotox. Res. 2006;14:54-67. doi: 10.1007/s12640-010-9210-2

11. Tiganov A.S., Kopeiko G.I., Brusov O.S., Klyushnik T.P. New findings in the study of the pathogenesis and treatment of endogenous depression. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2012;112(11):65-72 (In Russ.)

12. Klyushnik Т.Р., Zozulya S.A., Androsova L.V., Sarmanova Z.V., Otman I.N., Dupin A.M., Oleichik I.V., Abramova L.L,Stolyarov S.A., Shipilova E.S., Borisova O.A. Immunological monitoring of endogenous attack-like psychoses. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2014;114(2):31-35 (In Russ.)

13. Nunez P.L., Silberstein R.B., Shi 1., Carpenter M.R., Srinivasan R., Tucker D.M., Doran S.M., Cadusch P.J., Wijesinghe R.S. EEG coherence. Clin. Neurophysiol. 1999;110(3):469-486. PMID: 10363771

14. Beauregard M., Paquette V., Levesqu, J. Dysfunction in the neural circuitry of emotional self-regulation in major depressive disorder. Neuroreport. 2006;17(8):843-846. doi: 10.1097/01.wnr.0000220132.32091.9f

15. Melnikova T.S., Lapin I.A., Sarkisian V.V. Use of coherent EEG analysis in psychiatry. Sotsial'naya i klinicheskaya psikhiatriya. 2009;19(l):90-94 (In Russ.)

16. Varlamov A.A., Strelets V.B. EEG coherence analysis in depressive disorders and its possible use in clinical practice: a literature review. Zhurnal vysshei nervnoi deyatel’nosti im. I.P. Pavlova. 2013;63(6):613-624. (in Russ.) doi: 10.7868/S004446771306018X

17. Andreasen N.C. Brain imaging: application in psychiatry. Sci¬ence. 1988;239:1381-1388. doi:org/10.1126/science.3279509

18. Uranova N.A., Vostrikov V.M., Vikhreva O.V. The role of oligodendroglia in pathogenesis of schizophrenia. Psykhiatriya. 2007; (4):49-54 (In Russ.)

19. Uranova N.A., Kolomeets N.S., Vikhreva O.V., Zimina I.S., Rakhmanova V.I., Orlovskaya D.D. Ultrastructural changes of brain myelin fibers in persistent and attack-like paranoid schizophrenia. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2017;117(2):104-109 (In Russ.) doi: 10.17116/jnevro201711721104-109

20. Uranova N.A., Vikhreva O.V., Zimina I.Sv Rakhmanova V.I., Orlovskaya D.D. Ultrastructural pathology of oligodendrocytes in persistent paranoid schizophrenia: the role of microglia. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2017; 117(9):76—81 (In Russ.) doi: 10.17116/jnevro20171179176-81

21. Iznak A.F. Neuronal plasticity as one of aspects of pathogenesis and treatment of affective disorders. Psykhiatriya i psykhofarmakoterapiya. 2005;7(l):24-27 (In Russ.)

22. Crow T.J. Nuclear schizophrenic symptoms as a window on the relationship between thought and speech. British J. Psychiatry. 1998;173:303-309. doi:org/10.1192/bjp.173.4.303

23. Andreasen NC. Schizophrenia: the fundamental questions. Brain Res. Rev. 2000;1(2-3):106-112. PMID: 10Л9138

24. Iznak A.F., Iznak E.V., Kalyn YA.B., Safarova T.P., Sheshenin V.S., Gavrilova S.I. Dynamics of EEG parameters in elderly patients during multimodal antidepressive therapy. Psikhiatriya. 2015;(2):5-9 (In Russ.)

25. Melnikova T.S., Tsukarzi E.E., Kovalev A.V., Mosolov S.N. Dynamics of EEG coherence characteristics in transcranial magnetic stimulation of patients with therapy resistant depression. Sotsial'naya i klinicheskaya psikhiatriya. 2016;26(3):38-45 (In Russ.)

26. Iznak A.F., Iznak E.V., Damyanovich E.V., Oleichik I.V., Bologov P.V., Kazachinskaya I.I., Medvedeva T.I. Transcranial magnetic stimulation in combined treatment of pharmacoresistant depression: dynamics of clinical psychological and EEG parameters. Human Physiology. 2015;41(5):503-509. doi:org/10.1134/s0362119715050059

27. Tatebayashi Y. The dentate gyrus neurogenesis: a common ther-apeutic target for Alzheimer disease and senile depression? Seishin Shinkeigaku Zasshi. 2003;105:398-404. PMID: 12806901

28. Livanov M.N. Prostranstvennaya organizatsiya protsessov golovnogo mozga. M.: Nauka; 1972 (In Russ.)

29. Strelets V.B., Avin A.I., Zverev S.N. Brain biopotentials mapping in patients with depressive syndrome. Zhumal vysshei nervnoi deyatel'nosti im. I.P. Pavlova. 1990;40(5):903-910 (In Russ.)

30. Borisov S.V., Kaplan A.Ya., Gorbachevskaya N.L., Kozlova I.A. Analysis of EEG structural synchrony in adolescents with schizophrenic disorders. Human Physiology. 2005;31(3):255-261. doi:0362-1197/05/3103-0255

31. Kulaichev A.P., Iznak A.F., Iznak E.V., Kornilov V.V., Sorokin S.A. Changes of EEG correlation synchrony in depressive disorders of psychogenic type. Zhumal vysshei nervnoi deyatel'nosti im. I.P. Pavlova. 2014;64(2):181-186 (In Russ.) doi: 10.7868/S0044467714020129

32. Ivanov L.B. Prikladnaya komp'uternaya elektroentsefalografiya. 2 izd. M.: MBN; 2004 (In Russ.)

33. Zhirmunskaya E.A. Klinicheskaya elektroentsefalografiya. M.: MEYBI; 1991 (In Russ.)

34. Mitrofanov A.A. Computerized system for analysis and topo¬graphic mapping of brain electrical activity with neurometric EEG data bank (description and use). M.: 2005 (In Russ.)

35. Von Stain A., Sarntein J. Different frequencies for different scale of cortical integration: fromlocal gamma tolong range alpha/ theta synchronization. Int J. Psychophysiol. 2000;(38):301-314. PMID: 11102669

36. Uhlhaas P.J., Haenschel C., Nikolic D., Singer W. The role of oscillations and synchrony in cortical networks and their putative relevance for the pathophysiology of schizophrenia. Schizophr. Bull. 2008;34:927-943. doi: 10.1093/schbul/sbn062

37. Danilova N.N. The role of high-frequency rhythms of brain elec-trical activity in ensuring of mental processes. Psichologia. Zhumal vysshei shkoly ekonomiki. 2006;3(2):62-72 (In Russ.)

38. Herrmann C.S., Demiralp T. Human EEG gamma oscillations in neuropsychiatric disorders. Clin. Neurophysiology. 2005; 116:2719— 2733. doi: 10.1016/j.clinph.2005.07.007

39. Nagase Y., Okubo Y., Matsuura M. et aL EEG coherence in unmedicated schizophrenic patients: topographical study of predominantly never medicated cases. Biol. Psychiatry. 1992;32:1028- 1034. doi: org/10.1016/0006-3223(92)90064-7

40. Mann K, Maier W, Franke P. et al. Intra- and interhemispher- ic electroencephalogram coherence in siblings discordant for schizophrenia and healthy volunteers. Biol. Psychiatry. 1997;42:655-663. doi:org/10.1016/S0006-3223(96)00497-0

41. Wada Y, Nanbu Y, Kikuchi M., Koshino Y, Hashimoto T. Aberrant functional organization in schizophrenia: analysis of EEG coherence during rest and photic stimulation in drug-naive patients. Neuropsychobiology. 1998;38:63-69. doi: 10.1159/000026518

42. Strelets V.B., Garakh Zh.V., Novototskii-Vlasov V.Yu., Magomedov R.A. Relationship between EEG power and rhythm synchronization in health and cognitive pathology. Neuroscience and behavioral physiology. 2006;36(6):655-662. doi: 10.1007/s11055-006-0070-4

43. Winterer G., Egan M.F., Roedler T., Hyde T., Coppola R., Weinberger D.R. An association between reduced interhemispheric EEG coherence in the temporallobe and genetic risk for schizophrenia. Schizophr. Res. 2001;49:129-143. PMID: 11343872

44. Yeragani VK, Cashmere D, Miewald J. et aL Decreased coherence in higher frequency ranges (beta and gamma) between central and frontal EEG in patients with schizophrenia: A preliminary report Psychiatry Res. 2006;141:53-60. doi: 10.1016/j.psychres.2005.07.016

45. Sviderskaya N.E., Korol'kova T.A. Spatial synchronization of brain electrical processes: problems and solutions. Zhurnal vysshei nervnoi deyatel'nosti im. LP. Pavlova. 1997;47(5):792-805 (In Russ.)

46. Hoffman RE, Buchsbaum MS, Escobar MD. et al. EEG coherence of prefrontal areas in normal and schizophrenic males during perceptual activation. J. Neuropsychiatry Clin. Neurosci. 1991;3:169-175. doi: org/10.1176/jnp.3.2.169

47. Merrin E.L, Floyd T.C., Fein G. EEG coherence in unmedicated schizophrenic patients. BioL Psychiatry. 1989;25:60-66. doi: 10.1016/0006-3223(89)90147-9

48. Tauscher J., Fischer P., Neumeister A. et al. Low frontal electro-encephalographic coherence in neuroleptic-free schizophrenic patients. Biol. Psychiatry. 1998;44:438-447. doi: org/10.1016/S0006-3223(97)00428-9

49. Pachou E., Vourkas M., Simos P. et al. Working memory in schizophrenia: an EEG study using power spectrum and coherence analysis to estimate cortical activation and network behavior. Brain Topography. 2008;21(2): 128-137. doi: 10.1007/s10548-008-0062-5

50. Alfimova M.V., Mel'nikova T.S., Lapin I.A. The use of coherent EEG analysis and reactivity to psychophysiological tests in the first episode of schizophrenia. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2010;110(3):97-102 (In Russ.)

51. Melnikova T.S., Storozhakova Ya.A., Lapin I.A., Sarkisian V.V., Mitrofanov A.A. EEG coherence in the first episode and at remote stage of paranoid schizophrenia. Sotsial'naya i klinicheskaya psikhiatriya. 2010;20(4):39-45 (In Russ.)

52. Higashima M, Takeda T, Kikuchi M. et al. Functional connectivity between hemispheres and schizophrenic symptoms: a longitudinal study of interhemispheric EEG coherence in patients with acute exacerbations of schizophrenia. Clin. EEG Neurosci. 2006;37:10-15. doi: org/10.1177/155005940603700104

53. Higashima M., Takeda T., Kikuchi M. et al. State-dependent changes in intrahemispheric EEG coherence for patients with acute exacerbation of schizophrenia. Psychiatry Res. 2007:149: 41-47. doi: org/10.1016/j.psychres.2005.05.020

54. Morrison-Stewart S.L., Williamson Р.С., Corning W.C. et al. Coherence on electroencephalography and aberrant functional organization of the brain in schizophrenic patients during activation tasks. Br. J. Psychiatry. 1991;159:636-644. PMID: 1756339

55. Koenig T., Lehmann D., Saito N. et al. Decreased functional connectivity of EEG theta-frequency activity in first-episode, neuroleptic-narve patients with schizophrenia: preliminary results. Schizophr. Res. 2001;50:55-60. doi: org/10.1016/S0920-9964(00)00154-7

56. Luria A.R. Osnovy neiropsikhologii. M.: MSU Press; 2004 (In Russ.)

57. Zheng L., Chai H., Yu S., Xu Y., Chen W., Wang W. EEG theta pow-er and coherence to octave illusion in first-episode paranoid schizophrenia with auditory hallucinations. Psychopathology. 2015;48(l):36-46. doi: 10.1159/000366104.

58. Suffin S.C., Emory W.H., Gutierrez G., Arora G., Schiller M.J., Kling A. A QEEG database method for predicting pharmacotherapeutic outcome in refractory major depressive disorders. J. Am. Physicians Surg. 2007;12:104-108.

59. Ahn J., Han D.H., Hong J.S., Min K.J.,Lee Y.S« Hahm B.J., Kim S.M. Features of resting-state electroencephalogram theta coherence in somatic symptom disorder compared with major depressive disorder: a pilot study. Psychosom. Med. 2017;79(9):982-987. doi: 10.1097/PSY.0000000000000490

60. Olbrich S., Olbrich H., Adamaszek M., Jahn I., Hegerl U., Stengler K. Altered EEGlagged coherence during rest in obsessive-compulsive disorder. Clin. Neurophysiol. 2013; 124(12) 2421-2430. doi: 10.1016/j.clinph.2013.05.031

61. Park S.M., Lee J.Y., Kim Y.J., Lee J.Y., Jung H.Y., Sohn B.K., Kim D.J., Choi J.S. Neural connectivity in Internet gaming dis¬order and alcohol use disorder A resting-state EEG coherence study. Sci. Rep. 2017;7(1):1333. doi: 10.1038/s41598-017-01419-7

62. Мельникова T.C., Рогачева T.A. Анализ электроэнцефалограмм у больных эпилепсией в период ремиссии припадков. Российский психиатрический журнал. 2015;(3):58-62.


Review

For citations:


Iznak A.F., Iznak E.V., Mel’nikova T.S. Parameters of EEG coherence as reflection of brain neuroplasticity in mental pathology (review of literature). Psychiatry (Moscow) (Psikhiatriya). 2018;(78):127-137. (In Russ.)

Views: 1937


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)