Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Blockade of Alpha-1-adrenoceptors: role in the therapy of mental disorders

Abstract

Objective is to overview of the alpha-l-adrenoceptor dysfunction involvement in the various mental disorders pathogenesis and it is aimed to identify the most promising areas of clinical and pilot studies.

Results: among medications interacting with alpha-l-adrenoceptors the highest significance has been demonstrated for their antagonists. Generally, studies on the role of alpha-l-adrenoceptors yielded most promising results in the fields of neurocognitive disorders, stress-related disorders and schizophrenia. In these disorders selective alpha-l-adrenoblockers penetrating through the blood-brain barrier are reasonable candidates for the clinical evaluation.

Conclusion: active study of alpha-l-adrenoceptors and its disfunction determine pathway mechanisms and perspectives of therapeutical intervention.

About the Author

T. S. Syunyakov
Pfizer LLC
Russian Federation

Syunyakov Timur - candidate of medical sciences MD.

Moscow.



References

1. Kozisek M.E., Bylund D.B. Norepinephrine/epinephrine. In: Hoboken N.J. Handbook of contemporary neuropharmacology. USA: John Wiley & Sons, Inc., 2007. doi: 10.1002/9780470101001.hcn006.

2. Arnsten A.F.T., Raskind M.A. Taylor F.B., Connor D.F. The effects of stress exposure on prefrontal cortex: Translating basic research into successful treatments for post-traumatic stress disorder. Neurobiology of Stress. 2015;l(l):89-99. doi: 10.1016/j.ynstr.2014.10.002.

3. Yang L.J., Liu X., Liu D.X., Jiang H., Mao X.Q., Wang C« Pan F. Effects of different adrenergic blockades on the stress resistance of Wistar rats. Neurosci. Lett. 2012;511(2):95-100. doi: 10.1016/j.neulet2012.01.046.

4. Arnsten A.F.T. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 2015; 18(10): 1376-1385. doi: 10.1038/ПП.4087.

5. Haj-Dahmane S., Shen R.-Y. Chronic Stress Impairs 1-Adrenocep- tor-Induced Endocannabinoid-Dependent Synaptic Plasticity in the Dorsal Raphe Nucleus. J. Neurosd. 2014; 34(44): 14560- 14570. doi: 10.1523/JNEUROSCI.1310-14.2014.

6. Drazinic C. et al. Neurotransmitters and Receptors in Psychiatric Disorders. In: The American Psychiatric Association Publishing Textbook of Psychopharmacology. American Psychiatric Association Publishing, 2017. Ed.: Alan F. Schatzberg, Charles B. Nemeroff. doi: 10.1176/appi.books.9781615371624.as02.

7. Knauber J., Miiller W.E. Subchronic treatment with prazosin improves passive avoidance learning in aged mice: possible relationships to alphal-receptor up-regulation. J. Neural Transm. 2000; 107(12): 1413-1426. doi: 10.1007/s007020070005.

8. Lee T.W., Cotecchia S., Milligan G. Up-regulation of thelevels of expression and function of a constitutively active mutant of the hamster alphalB-adrenoceptor byligands that act as inverse agonists. Biochem. J. 1997;325(Pt 3):733-739. doi: 10.1042/bj3250733.

9. Stevens P.A., Bevan N.. Rees S., Milligan G. Resolution of inverse agonist-induced up-regulation from constitutive activity of mutants of the alpha(lb)-adrenoceptor. Mol. Pharmacol. 2000;58(2):438-448. doi: https://doi.org/10.1124/mol.58.2.438

10. Gannon M., Che P., Chen Y., Jiao K., Roberson E.D., Wang Q. Nor-adrenergic dysfunction in Alzheimer's disease. Front. Neurosd. 2015;9(JUN):1-12. doi: 10.3389/fnins.2015.00220.

11. Purkayastha S., Raven P. The functional role of the alpha-1 adr¬energic receptors in cerebral blood flow regulation. Indian J. Pharmacol. 2011;43(5):502. doi: 10.4103/0253-7613.84950.

12. Piascik M.T., Perez D.M. Alphal-adrenergic receptors: new insights and directions. J. Pharmacol. Exp. Ther. 2001;298(2):403- 410.

13. Fitzgerald P.J. Noradrenaline transmission reducing drugs may protect against a broad range of diseases. Auton. Autacoid Pharmacol. 2015;34(3-4): 15-26. doi: 10.1111/aap.12019.

14. Chen Z., Minneman K.P. Recent progress in al-adrenergic recep¬tor research Acta Pharmacol. Sin. 2005;26(11):1281—1287. doi: 10.1111/j.l745-7254.2005.00224.x.

15. Black C.E. et al. Effect of nicotine on vasoconstrictor and vasodilator responses in human skin vasculature. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2001;281(4): R1097-104. doi: 10.1152/ajpregu.2001.281.4.R1097.

16. Hock C.E., Passmore J.C. Mechanisms mediating canine re¬nal vasoconstriction induced by nicotine infusion. Life Sci. 1985;37(21):1997-2003. doi: 10.1016/0024-3205(85)90030-X.

17. Lecerof H. et al. Acute effects of doxazosin and atenolol on smoking-induced peripheral vasoconstriction in hypertensive habitual smokers. J. Hypertens. Suppl. 1990;8(5):29-33.

18. Cryer P.E., Haymond M.W., Santiago J.V., Shah S.D. Norepinephrine and epinephrine release and adrenergic mediation of smoking-associated hemodynamic and metabolic events. N. Engl. J. Med. 1976;295(11):573—577. doi: 10.1056/NEJM197609092951101.

19. Haase N., Herse F., Spallek B., Haase H., Morano I., Qadri F.f Szijarto I.A., Rohm I., Yilmaz A., Warrington J.P., Ryan M.J., Gollasch M., Muller D.N., Dechend R., Wallukat G. Amyloid-3 peptides activate al-adrenergic cardiovascular receptors Hy¬pertens. (Dallas, Tex. 1979). 2013;62(5):966-972. doi: 10.1161/HYPERTENSIONAHA.113.01348.

20. Dietrich H.H., Xiang C., Han B.H., Zipfel G.J., Hottzman D.M. Soluble amyloid-beta, effect on cerebral arteriolar regulation and vascular cells. Mol. Neurodegener. 2010;5:15. doi: 10.1186/1750-1326-5-15

21. Smith E.E., Greenberg S.M. Beta-amyloid blood vessels and brain function. Stroke. 2009;40(7):2601-2606. doi: 10.1161/STROKEAHA. 108.53 6839.

22. Russo-Neustadt A., Cotman C.W. Adrenergic receptors in Alzheimer's disease brain: selective increases in the cerebella of aggressive patients. J. Neurosci. 1997;17(14):5573 -5580. doi: https://doi.org/10.1523/JNEUROSCI.17-14-05573.1997.

23. Antonsdottir I.M., Smith J., Keltz M., Porsteinsson A.P. Advancements in the treatment of agitation in Alzheimer's disease, Expert Opin. Pharmacother. 2015; 16(11): 1649-1656. doi: 10.1517/14656566.2015.1059422.

24. Peskind E.R. et al. Propranolol for disruptive behaviors in nursing home residents with probable or possible Alzheimer disease: a placebo-controlled study Alzheimer Dis. Assoc. Disord. 19(l):23-28. doi: 10.1097/01.wad.0000155067.16313.5e.

25. Wang L.Y., Shofer J.B., Rohde K., Hart K.L, Hoff D.J., McFall Y.H., Raskind M.A., Peskind E.R. Prazosin for the treatment of behavioral symptoms in patients with Alzheimer disease with agitation and aggression. Am. J. Geriatr. Psychiatry. 2009;17(9):744- 751. doi: 10.1097/JGP.0b013e3181ab8c61.

26. Fioravanti M., Flicker L. Nicergoline for dementia and other age associated forms of cognitive impairment In: Cochrane Database of Systematic Reviews / Ed. M. Fioravanti. Chichester, UK: John Wiley & Sons, Ltd 2001. N? 4. P. CD003159. doi: 10.1002/14651858.CD003159.

27. Winblad B., Fioravanti M„ Dolezal T., Logina I., Milanov I.G., Popescu D.C., Solomon A. Therapeutic use of nicergoline. Clin. Drug Investig. 2008;28(9):533-552. doi: 10.2165/00044011-200828090-00001.

28. Zajdel P., Bednarski M., Sapa J., Nowak G. Ergotamine and nicergoline — facts and myths. Pharmacol. Reports. Institute of Pharmacology, Polish Academy of Sciences. 2015;67(2):360-363. doi: 10.1016/j.pharep2014.10.010.

29. Fioravanti M., Nakashima T., Xu J., Garg A. A systematic review and meta-analysis assessing adverse event profile and tolerability of nicergoline BMJ Open. 2014;4(7):e005090. doi: 10.1136/bmjopen-2014-005090.

30. Пономарева E.B., Телешова E.C., Сюняков T.C. Сочетание нейродегенеративных и сосудистых механизмов в патогенезе деменций позднего возраста Психиатрия. 2017;76(4):97-107 (In Russ.)

31. Пономарева Е.В. Применение ницерголина в геронтологической практике. Психиатрия. 2016;71(3):106-120 (In Russ.)

32. Bes A. et al. A 24-month double-blind placebo-controlled multicentre pilot study of the efficacy and safety of nicergoline 60 mg per day in elderly hypertensive patients with leukoaraiosis. Eur. J. Neurol. 1999;6(3):313-322. doi: 10.1046/j.l468-1331.1999.630313.x.

33. Boulu P. Effets du Sermion® surles troubles mn. esiques etles fonctions dela vie de relation. Tempo Med. 1990;397:24-27.

34. Carfagna N.. Cavanus S., Damiani D., Salmoiraghi P., Fariello R., Post C. Modulation of phosphoinositide turnover by chronic nicergoline in rat brain. Neurosd. Lett. 1996;209:189-192. doi: 10.1016/0304-3940(96)12634-3.

35. Karczewski P. et al. Agonistic autoantibodies to the al-adrenergic receptor and the 32-adrenergic receptor in Alzheimer's and vascular dementia. Scand. J. Immunol. 2012;75(5):524-530. doi: 10.1111/j.1365-3083.2012.02684.x.

36. Zhou Z., Liao Y., Li L., Wei F., Wang B., Wei Y., Wang M., Cheng X. Vascular damages in rats immunized by al-Adrenoceptor peptides. Cell. Mol. Immunol. 2008;5(5):349-356. doi: 10.1038/cmi.2008.43.

37. Karczewski P. et al. Antibodies to the al-adrenergic receptor cause vascular impairments in rat brain as demonstrated by magnetic resonance angiography. PLoS One / ed. Herholz K. 2012;7(7):e41602. doi: 10.1371/journal.pone.0041602.

38. Wenzel K. et al. Potential relevance of al-adrenergic receptor autoantibodies in refractory hypertension. PLoS One. 2008;3(ll):e3742. doi: 10.1371/journal.pone.0003742.

39. Kung S., Espinel Z., Lapid M.I. Treatment of nightmares with prazosin: A systematic review. Mayo Clinic Proceedings. 2012;87(9):890-900. doi: 10.1016/j.mayocp.2012.05.015.

40. Akinsanya A., Marwaha R., Tampi R.R. Prazosin in children and adolescents with posttraumatic stress disorder who have nightmares. J. Clin. Psychopharmacol. 2017;37(l):84-88. doi: 10.1097/JCP.0000000000000638.

41. Baisley S.K., Fallace K.L., Rajbhandari A.K., Bakshi V.P. Mutual independence of 5-HT(2) and al-noradrenergic receptors in mediating deficits in sensorimotor gating. Psychopharmacology (Bert). 2012;220(3):465-479. doi: 10.1007/s00213-011-2490-2.

42. Bakshi V.P., Geyer M.A. Phencyclidine-induced deficits in prepulse inhibition of startle are blocked by prazosin, an alpha-1 noradrenergic antagonist J. Pharmacol. Exp. Ther. 1997;283(2):666-674.

43. Alsene K.M. et aL Disruption of prepulse inhibition after stim-ulation of central but not peripheral alpha-1 adrenergic receptors. Neuropsychopharmacology. 2006;31(10):2150-2161. doi: 10.1038/sj.npp.1300989.

44. Nikiforuk A. Quetiapine ameliorates stress-induced cognitive inflexibility in rats. Neuropharmacology. 2013;64:357-364. doi: 10.1016/j.neuropharm.2012.06.042.

45. Romon T., Planas A.M., Adell A. Blockade of МК-801-induced heat shock protein 72/73 in rat brain by antipsychotic and monoaminergic agents targeting D2,5-HT1A, 5-HT2A and al-adrenergic receptors. CNS Neurol. Disord. Drug Targets. 2014; 13(1):104-111. doi: 10.2174/18715273113129990110.

46. Minzenberg M.J., Yoon J.H. An index of relative central a-adrenergic receptor antagonism by antipsychotic medications. Exp. Clin. Psychopharmacol. 2011;19(l):31-39. doi: 10.1037/30022258.

47. Stahl S.M. Stahl's essential psychopharmacology: neuroscientific basis and practical applications. Cambridge university press 2013.


Review

For citations:


Syunyakov T.S. Blockade of Alpha-1-adrenoceptors: role in the therapy of mental disorders. Psychiatry (Moscow) (Psikhiatriya). 2018;(78):150-157. (In Russ.)

Views: 853


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)