Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Ultrastructural abnormalities of astrocytic cell processes in prefrontal and visual cortex in schizophrenia

https://doi.org/10.30629/2618-6667-2018-79-69-78

Abstract

Aim: to perform electron microscopic morphometric study of astrocytic processes (AP), including those directly adjacent to axospinous synapses, in the prefrontal cortex (PFC) and visual cortex (VC) in postmortem brains of schizophrenia patients and normal controls.

Material and methods: PFC and VC (Brodmann areas 10 and 17) obtained from autopsies of 20 cases of schizophrenia and 16 normal controls. Volume fraction (Vv) of APand Vv of mitochondria inside these processes, including those adjacentto axo-spinous synapses, were estimated layers I and II of the PFC and VC in the schizophrenia and control groups.

Results: in layer I of the PFC, a significant decrease in Vv of AP (-31%, p < 0,05), of AP mitochondria (-48%, p < 0,05) and Vv of AP adjacent to axospinous synapses (-44%, p < 0,05) were found in schizophrenia as compared to controls. No significant changes in any of those parameters were detected in the VC of the schizophrenia group compared with control group. In layer II a significantly lower Vv of AP were found only in the VC in schizophrenia (-38%, p < 0,01).

Conclusion: regressive decrease in the Vv of AP in schizophrenia is region-specific and might be associated with the decrease in the density and the dysfunction of axospinous synapses in the PFC. The changes might be of development origin.

About the Authors

O. V. Vikhreva
Mental Health Research Centre
Russian Federation

Olga V. Vikhreva - Cand. of Sci. (Biol.), senior researcher, laboratory of clinical neuromorphology.

Moscow.



V. I. Rakhmanova
Mental Health Research Centre
Russian Federation

Valentina I. Rakhmanova - application programmer, department of brain research, laboratory of the ultrastructure and cytochemistry/

Moscow.



A. Ju. Klintsova
University of Illinois at Urbana-Champaign; University of Delaware
United States
Anna Ju. Klintsova - Cand. of Ski. (Biol.), professor, department of psychological and brain sciences, University of Delaware.


W. T. Greenough
University of Illinois at Urbana-Champaign
United States

William T. Greenough - PhD, swanland professor, Beckman Institute.



N. A. Uranova
Mental Health Research Centre
Russian Federation

Natalya A. Uranova - Dr. of Sci. (Med.), head of the laboratory of clinical neuromorphology.

Moscow.



References

1. Zhou Y., Fan L., Qiu C., Jiang T. Prefrontal cortex and the dysconnectivity hypothesis of schizophrenia. Neurosd. BulL 2015;31(2):207-219. doi: 0.1007/sl2264-014-1502-8

2. Sanfilipo M., Lafargue T., Rusinek H., Arena L., Loneragan C., Lautin A., Feiner D., Rotrosen J., Wolkin A. Volumetric measure of the frontal and temporal lobe regions in schizophrenia: relationship to negative symptoms. Arch. Gen. Psychiatry. 2000;57:471-480.

3. Rajkowska G.,Miguel-Hidalgo J.J., Makkos L, Mettzer H., Overholser J., Stockmeier C. Layer-specific reductions in GFAP- reactive astroglia in the dorsolateral prefrontal cortex in schizophrenia. Schizophr. Res. 2002;57(2-3):127-138.

4. Schnieder Т.Р., Dwork A.J. Searching for neuropathology: gliosis in schizophrenia. Biol. Psychiatry. 2011;69(2):3134-3139. DOI: 10.1016/j.biopsych.2010.08.027

5. Vostrikov V.M., Uranova N.A., Rakhmanova V.I., Orlovskaia D.D. [Lowered oligodendroglial cell density in the prefrontal cortex in schizophrenia]. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2004;104(1):47-51. (In Russ.).

6. Vostrikov V., Orlovskaya D., Uranova N. Deficit of pericapillary oligodendrocytes in the prefrontal cortex in schizophrenia. World J. Biol. Psychiatry. 2008;9:34-42.

7. Thune J.J., Uylings H.B., Pakkenberg B. No deficit in total number of neurons in the prefrontal cortex in schizophrenics. J. Psychiatr. Res. 2001;35:15-21.

8. Black J.E., Kodish I.M., Grossman A.W., Klintsova A.Y., Orlovskaya D., Vostrikov V., Uranova N., Greenough W.T. Pathology oflayer V pyramidal neurons in the prefrontal cortex of patients with schizophrenia. Am. J. Psychiatry. 2004;161:742-744.

9. Harrison P.J., Weinberger D.R. Schizophrenia genes, gene expression, and neuropathology: on the matter of their convergence. Mol. Psychiatry. 2005;10(1):40-68.

10. Ellis S.E., Panitch R., West A.B., Arking D.E. Transcriptome analysis of cortical tissue reveals shared sets of downregulated genes in autism and schizophrenia. TransL Psychiatry. 2016;6:e817. DOI: 10.1038/tp.2016.87

11. Roberts R.C., Conley R., Kung L, Peretti F.J., Chute D.J. Reduced striatal spine size in schizophrenia: a postmortem ultrastructural study. Neuroreport. 1996;7(6): 1214-1218.

12. Uranova N., Orlovskaya D., Zimina I., Vikhreva O., Rachmanova V., Klintsova A., Black J.E., Grenough W.T. Decreased synaptic size in schizophrenic cortex: a postmortem morphometric electron microscopic study. 30th Annual Meeting of the Society for Neuroscience Abstracts. 2000;26:1558-1558.

13. Uranova N.A., Casanova M.F., DeVaughn N.M., Orlovskaya D.D., Denisov D.V. Ultrastructural alterations of synaptic contacts and astrocytes in postmortem caudate nucleus of schizophrenic patients. Schizophr. Res. 1996;22:81-83.

14. Kung L Roberts R.C. Mitochondrial pathology in human schizophrenic striatum: a postmortem ultrastructural study. Synapse. 1999;31(1):67-75.

15. Somerville S.M., Conley R.R., Roberts R.C. Mitochondria in the striatum of subjects with schizophrenia. World J. Biol. Psychiatry. 2011;12(1):48-56. DOI: 10.3109/15622975.2010.505662

16. Roberts R.C., Barksdale K.A., Roche J.K., Lahti A.C. Decreased synaptic and mitochondrial density in the postmortem anterior cingulate cortex in schizophrenia. Schizophr. Res. 2015;168(1- 2):543-553. DOI: 10.1016/j.schres.2015.07.01

17. Uranova N.A., Vikhreva O.V., Zimina I.S., Rakhmanova V.L, Klintsova A.Iu., Black J., Greenough W.T., Orlovskaia D.D. [Abnormal patterns of cortical synaptic connectivity in schizophrenia]. Vestn. Ross. Akad. Med. Nauk. 2007;3:8-14. (In Russ.).

18. Perez-Alvarez A., Navarrete M., Covelo A., Martin E.D., Araque A. Structural and functional plasticity of astrocyte processes and dendritic spine interactions. J. Neurosci. 2014;34(38):12738-12744. DOI: 10.1523/JNEUR0SCI.2401-14.2014

19. Boksha I.S., Tereshkina E.B., Burbaeva G.Sh. Glutamine synthetase and glutamine synthetase-like protein from human brain, purification and comparative characterization. J. Neurochem. 2000;75:2574-2582.

20. Burbaeva G.S, Boksha I.S., Tereshkina E.B., Savushkina O.K., Starodubtseva L.I., Turishcheva M.S., Mukaetova-Ladinska E. Systemic neurochemical alterations in schizophrenic brain, glutamate metabolism in focus. Neurochem. Res. 2007;32(9):1434-1444. doi.org/10.1007/s11064-007-9328-7

21. Xia M., Abazyan A., Yan Jouroukhin Y., Pletnikov M. Behavioral sequelae of astrocyte dysfunction: focus on animal models of schizophrenia. Schizophr Res. 2016;176(1):72-82. DOI: 10.1016/j.schres.2014.10.044

22. Webster M., Knable M., Johnston-Wilson N., Nagata K., Inagaki M., Yolken R. Immunohistochemicallocalization of phosphorylated glial fibrillary acidic protein in the prefrontal cortex and hippocampus from patients with schizophrenia, bipolar disorder, and depression. Brain Behav. ImmunoL 2001;15:388-400.

23. Steffek A.E., McCullumsmith R.E., Haroutunian V., Meador- Woodruff J.H. Cortical expression of glial fibrillary acidic protein and glutamine synthetase is decreased in schizophrenia. Schizophr. Res. 2008;103:71-82.

24. Feresten A.H., Barakauskas V., Ypsilanti A., Barr A.M., Beasley C.L Increased expression of glial fibrillary acidic protein in prefrontal cortex in psychotic illness. Schizophr. Res. 2013;150:252-257.

25. Catts V.S., Wong J., Fillman S.G., Fung S.J., Weickert S.C. Increased expression of astrocyte markers in schizophrenia: Association with neuroinflammation. Aust. NZ. J. Psychiatry. 2014;48(8):722-734. DOI: 10.1177/0004867414531078

26. Kolomeets N.S., Uranova N. Ultrastructural abnormalities of astrocytes in the hippocampus in schizophrenia and duration of illness: a postmortem morphometric study. World J. Biol. Psychiatry. 2010;ll(2):282-292.

27. Blanco-Suarez E., Caldwell A.L., Allen N.J. Role of astrocyte-synapse interactions in CNS disorders. J. Physiol. 2017;595(6): 1903—1916. DOI: 10.1113/JP270988

28. Sirevaag A.M., Greenough WT. PlasticityofGFAP-immunoreactive astrocyte size and number in visual cortex of rats reared in complex environments. Brain Res. 1991;540(1-2):273-278.

29. Greenough W.T., Chang F.L. Dendritic pattern formation involves both oriented regression and oriented growth in the barrels of mouse somatosensory cortex. Brain Res. 1988;471(1):148-152.

30. Oifa A.I., Uranova N.A. Electron-microscopic analysis of cytoarchitectonic disorders in the cerebral cortex in schizophrenia. Zhurnal neurologii i psikhiatrii im. S.S. Korsakova. 1991;91(10):48-52. (In Russ.).

31. Davis J.M. Dose equivalence of the antipsychotic drugs. J. Psychiat. Res. 1974; 11:65-69.

32. Woods S.W. Chlorpromazine equivalent doses for the new atypical antipsychotics. J. Clin. Psychiatry. 2003;64(6):663-667.

33. Peters A, Paley C, Webster G. The fine structure of the nervous system. 1976. W.B. Saunders Company

34. Gundersen H.J., Bagger P., Bendtsen T.F., Evans S.M., Korbo L., Marcussen N., Moller A., Nielsen K., Nyengaard J.R., Pakkenberg B. The new stereological tools: disector, fractionator, nucleator and point sampled intercepts and their use in pathological research and diagnosis. APMIS. 1988;96:857-881.

35. Konopaske G.T., Dorph-Petersen K.A., Pierri J.N., Wu Q., Sampson A.R., Lewis D.A. Effect of chronic exposure to antipsychotic medication on cell numbers in the parietal cortex of macaque monkeys. Neuropsychopharmacol. 2007;32:1216-1223.

36. Kolomeets N.S., Vostrikov V.M., Uranova N.A. The effects of blood serum from schizophrenia patients under olanzapine monotherapy on the ultrastructure of astrocytes in human fetal brain organotypic culture. Zhurnal neurologii i psikhiatrii im. S.S. Korsakova. 2016;116(5):65-70. DOI: 10.17116/jnevro20161165165-70

37. Sullivan C.R., O'Donovan S.M., McCullumsmith R.E., Ramsey A. Defects in Bioenergetic Coupling in Schizophrenia. Biol. Psychiatry. 2017 pii: S0006-3223(17)32099-1. DOI: 10.1016/j.biopsych.2017.10.014

38. Rezin G.T., Amboni G., Zugno A.I., Quevedo J., Streck E.L. Mitochondrial dysfunction and psychiatric disorders. Neurochem. Res. 2009;34(6):1021-1029. DOI: 10.1007/s11064- 008-9865-8

39. Ben-Shachar D., Karry R. Neuroanatomical pattern of mitochondrial complex i pathology varies between schizophrenia, bipolar disorder and major depression. PLoS One. 2008;3(11):e3676. DOI:10.1371/journal.роnе.0003676

40. Martins-de-Souza D., Harris L.W., Guest P.C., Bahn S. The role of energy metabolism dysfunction and oxidative stress in schizophrenia revealed by proteomics. Antioxid Redox Signal. 2011;15(7):2067-2079. DOI: 10.1089/ars.2010.3459

41. van de Ven V., Rotarska Jagiela A., Oertel-Knochel V., Linden D.E.J. Reduced intrinsic visual cortical connectivity is associated with impaired perceptual closure in schizophrenia. Neuroimage Clin. 2017;15:45-52. DOI: 10.1016/j.nicl.2017.04.012

42. Lang X., Wang L., Zhuo C.J., Jia F.f Wang LN., Wang C.L Reduction of Interhemispheric Functional Connectivity in Sensorimotor and Visual Information Processing Pathways in Schizophrenia. Chin. Med. J. (Engl) 2016;129(20):2422-2426. DOI: 10.4103/0366-6999.191758

43. Muly E.C., Maddox M., Smith Y. Distribution of mGluRlalpha and mGluR5 immunolabeling in primate prefrontal cortex. J. Comp. Neurol. 2003;467(4):521-535.

44. Roberts R.C., Roche J.K., McCullumsmith R.E. Localization of excitatory amino acid transporters EAAT1 and EAAT2 in human postmortem cortex: a light and electron microscopic study. Neuroscience. 2014;277:522-540.

45. Dracheva S., McGurc S.R., Haroutunian V. mRNA expression of AMPA-receptors and AMPA-receptor binding proteins in the cerebral cortex of elderly schizophrenics. J. Neurosci. Res. 2005;79(6):868-878.

46. van Elst LT., Valerius G., Buchert M., Thiel T., Riisch N., Bubl E., Hennig 3., Ebert D., Olbrich H.M. Increased prefrontal and hippocampal glutamate concentration in schizophrenia: evidence from a magnetic resonance spectroscopy study. BioL Psychiatry. 2005;58(9):724-730.

47. Scarr E., Beneyto M., Meador-Woodruff 3.H., Deans B. Cortical glutamatergic markers in schizophrenia. Neuropsychopharmacology. 2005;30(8): 1521-1531.

48. Goudriaan A., de Leeuw C., Ripke S., Hultman C.M., Sklar P., Sullivan P.F., Smit A.B., Posthuma D., Verheijen M.H. Specific Glial Functions Contribute to Schizophrenia Susceptibility. Schizophr. Bull. 2014;40:925-935.

49. Hagihara H., Ohira K., Takao K., Miyakawa T. Transcriptomic evidence for immaturity of the prefrontal cortex in patients with schizophrenia. Mol. Brain. 2014;7:41-41.

50. Markham 3.A., Mullins S.E., Koenig J.I. Periadolescent maturation of the prefrontal cortex is sex-specific and is disrupted by prenatal stress. J. Comp. Neurol 2013;521:1828-1843.


Review

For citations:


Vikhreva O.V., Rakhmanova V.I., Klintsova A.J., Greenough W.T., Uranova N.A. Ultrastructural abnormalities of astrocytic cell processes in prefrontal and visual cortex in schizophrenia. Psychiatry (Moscow) (Psikhiatriya). 2018;(79):69-78. (In Russ.) https://doi.org/10.30629/2618-6667-2018-79-69-78

Views: 583


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)