Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Glutamate Level’s in Blood Serum of Patients with Schisophrenic Spectrum and Bipolar Affective Disorder

https://doi.org/10.30629/2618-6667-2020-18-3-22-31

Abstract

The objective: the involvement of glutamatergic neurotransmitter systems in the pathogenesis of schizophrenic spectrum disorders and BD has been repeatedly proven. But today, there are no methods available to evaluate the glutamate metabolism in patients with mental disorders. The paper presents differences in the level of glutamate in the blood serum of patients with a schizophrenic spectrum disorder, bipolar disorder, and healthy individuals.

Patients and methods: the study included 224 people. 179 patients were presented with paranoid schizophrenia, simple schizophrenia, schizotypal disorder, acute polymorphic disorder, schizoaffective disorder and BD.

Results: in this work shows that the level of glutamate in patients in all studied groups is statistically significantly higher than in healthy individuals, except for acute polymorphic psychotic disorder. Serum glutamate concentration in patients with schizotypal disorder is 1.6 times higher than in healthy individuals. The significant differences in glutamate levels were detected in patients with schizotypal disorder and OCD (p = 0.045), and patients with paranoid schizophrenia (p = 0.012). The concentration of glutamate is also increased in patients with simple schizophrenia compared to patients with paranoid schizophrenia (p = 0.039). In addition, it was observed a glutamate increase in healthy individuals compared in patients with a continuous course of schizophrenia (p = 0.001), in patients with an episodic course with progressive deficit (p = 0.0211) and in patients with a schizophrenia duration of more than 12 years.

Conclusions: thus, the concentrations of glutamate in the blood serum of patients are depending on the severity of the course of schizophrenia and maybe an additional paraclinical criterion for the diagnosis of schizotypal disorder.

About the Authors

A. A. Seregin
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Aleksandr A Seregin


Tomsk



L. P. Smirnova
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Ljudmila P. Smirnova, PhD, Cand. of Sci. (Med.)

Tomsk



E. M. Dmitrieva
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Elena M. Dmitrieva

Tomsk



S. N. Vasil’eva
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Svetlana N. Vasil’eva, PhD, Cand. of Sci. (Med.)

Tomsk



A. V. Semke
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Arkadij V. Semke, MD, PhD, Dr. of Sci. (Med.)

Tomsk



S. A. Ivanova
FSBSI «Tomsk National Research Medical Center”, Russian Academy of Sciences, Mental Health Research Institute
Russian Federation

Svetlana A. Ivanova, MD, PhD, Dr. of Sci. (Med.)

Tomsk



References

1. Ohgi Y, Futamura T, Hashimoto K. Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr. Mol. Med. 2015;15:206–221. https://DOI:10.2174/1566524015666150330143008

2. Li CT, Lu CF, Lin HC, Huang YZ, Juan CH , Su TP, Bai YM, Chen MH, Lin WC. Cortical inhibitory and excitatory function in drug-naive generalized anxiet y disorder. Brain Stimul. 2017;10(3):604–608.https://DOI:10.1016/j.brs.2016.12.007

3. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch. Gen. Psychiatry. 1994;51:199–214. DOI:10.1001/archpsyc.1994.03950030035004

4. Javitt DC. Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia Hillside. J. Clin. Psychiatry. 1987;(9):12–35.

5. Javitt DC, Zukin SR, Heresco-Levyt U, Umbricht D. Has an angel shown the way? Etiological and therapeutic implications of the PCP/NMDA model of schizophrenia. Schizophr. Bull. 2012;(38):958–966. https://DOI:10.1093/schbul/sbs069

6. Burbaeva GSh, Boksha IS, Starodubceva LI, Savushkina OK, Tereshkina EB, Turishheva MS, Prohorova TA, Vorob’eva EA, Morozova MA. Narushenie metabolizma glutamata pri shizofrenii. Vestnik Rossijsk oj akademii medicinskih nauk. 2007;3:19–24. (In Russ.).

7. Toru M, Kurumaji A, Ishimaru M. Excitatory amino acids: implications for psychiatric disorders research. Life Sci. 1994;(55):1683–1699.

8. Kerwin R, Patel S, Meldrum B. Quantitative autoradiographic analysis of glutamate binding sites in the hippocampal formation in normal and schizophrenic brain post mortem. Neuroscience. 1990;(39):25–32.

9. Beneyto M, Meador-Woodruff JH. Lamina-specific abnormalities of NMDA receptor-associated postsynaptic protein transcripts in the prefrontal cortex in schizophrenia and bipolar disorder. Neuropsychopharmacology. 2008;(33):2175–2186. https://DOI:10.1038/sj.npp.1301604

10. Beneyto M, Kristiansen LV, Oni-Orisan A, McCullumsmith RE, Meador-Woodruff JH. Abnormal glutamate receptor expression in the medial temporal lobe in schizophrenia and mood disorders. Neuropsychopharmacology. 2007;(3 2):1888–1902. https://DOI:10.1038/sj.npp.1301312

11. Matosin N, Fernandez-Enright F, Frank E, Deng C, Wong J, Huang XF, Newell KA. Metabotropic glutamate receptor mGluR2/3 and mGluR5 binding in the anterior cingulate cortex in psychotic and nonpsychotic depression, bipolar disorder and schizophrenia: implications for novel mGluR-based therapeutics. J. Psychiatry Neurosci. 2014;(39):407–416. https://DOI:10.1503/jpn.130242

12. Blacker CJ, Lewis CP, Frye MA, Veldic M. Metabotropic glutamate receptors as emerging research targets in bipolar disorder. Psychiatry Res. 2017;(257):327–337. https://DOI:10.1016/j.psychres.2017.07.059

13. Gigante AD, Bond DJ, Lafer B, Lam RW, Young LT, Yatham LN. Brain glutamate levels measured by magnetic resonance spectroscopy in patients with bipolar disorder: a meta-analysis. Bipolar Disord. 2012;(14):478–487. https://DOI:10.1111/j.1399-5618.2012.01033.x

14. Chitty KM, Lagopoulos J, Lee RS, Hickie IB, Hermens DF. A systema tic review and meta-analysis of proton magnetic resonance spectroscopy and mismatch negativity in bipolar disorder. Eur. Neuropsychopharmacol. 2013;(23):1348–1363. https://DOI:10.1016/j.euroneuro.2013.07.007

15. Loginova LV, Smirnova LP, Serjogin AA, Dmitrieva EM, Mazin EV, Simutkin GG. K voprosu poiska biomarkjorov pri bipoljarnom affektivnom rasstrojstve. Vestnik Ural’skoj medicinskoj akademicheskoj nauki. 2014;3(49):139–141. (In Russ.).

16. Merritt K, Egerton A, Kempton MJ, Taylor MJ, McGuire PK. Nature of glutam ate alterations in schizophrenia: a meta-analysis of proton magnetic resonance spectroscopy studies. JAMA Psychiatry. 2016;(73):665–674. https://DOI:10.1001/jamapsychiatry.2016.0442

17. Egerton A, Broberg BV, Van Haren N, Merritt K, Barker GJ, Lythgoe DJ, Perez-Iglesias R, Baandrup L, Düring SW, Sendt KV, Stone JM, Rostrup E, Sommer IE, Glenthøj B, Kahn RS, Dazzan P, McGuire P. Response to initial antipsychotic treatment in first episode psychosis is related to anterior cingulate glutamate levels: a multicentre (1)H-MRS study (OPTiMiSE). Mol. Psychiat ry. 2018;(23):2145–2155. https://DOI:10.1038/s41380-018-0082-9.

18. Nugent AC, Diazgranados N, Carlson PJ, Ibrahim L, Luckenbaugh DA, Brutsche N, Herscovitch P, Drevets WC, Zarate CA Jr. Neural correlates of rapid antidepressant response to ketamine in bipolar disorder. Bipolar Disord. 2014;(16):119–128. https://DOI:10.1111/bdi.12118

19. Altamura CA, Mauri MC, Ferrara A, Moro AR, D’Andrea G, Zamberlan F. Plasma and platelet excitatory amino acids in psychiatric disorders. Am. J. Psychiatry. 1993;150(11):1731–1733.

20. Semke AV, Vetlugina TP, Ivanova SA, Rahmazova LD, Gutkevich EV, Lobacheva OA, Kornetova EG. Biopsihosocial’nye osnovy i adaptacionno-kompensatornye mehanizmy shizofrenii v regione Cibiri. Sibirskij vestnik psihiatrii i narkologii. 200 9;5(56):15–2 0. (In Russ.).

21. Semke AV, Fedorenko OJu, Lobacheva OA, Rahmazova LD, Kornetova EG, Smirnova LP, Mikilev FF, Shhigoreva JuG. Klinicheskie, jepidemi ologicheskie i biologicheskie predposylki adaptacii bol’nyh shizofreniej kak osnova personificirovannogo podhoda k antipsihoticheskoj terapii. Sibirskij vestnik psihiatrii i narkologii. 2015;3(88):19–25. (In Russ.).

22. Inoshita M, Umehara H, Watanabe SY, Nakataki M, Kinoshita M, Tomioka Y, Tajima A, Numata S, Ohmori T. Elevated peripheral bl ood glutamate levels in major depressive disorder. Neuropsych. Dis. & Treat. 2018;(14):945–953. https://DOI:10.2147/NDT.S159855

23. Smirnova LP, Loginova LV, Ivanova SA, Dmitrieva EM, Serjogin AA, Mikilev FF, Semke AV, Bohan NA. Laboratornyj sposob diagnostiki shizotipicheskogo rasstrojstva. Pat. № 2569741 Rossijskaja Federacija G01N 33/50. 2014148200/15; opubl. 27.11.2015.

24. Purcell SM, Wray NR, Stone JL, Visscher PM, O’Donovan MC, Sullivan PF, Sklar P. Common polygenic variation contributes to risk of schizophrenia and bipolar disorder. Nature. 2009;460(7256):748–752. https://DOI:10.1038/nature08185

25. Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Electronic address: douglas.ruderfer@vanderbilt.edu; Bipolar Disorder and Schizophrenia Working Group of the Psychiatric Genomics Consortium. Genomic Dissection of Bipolar Disorder and Schizophrenia, Including 28 Subphenotypes. Cell. 2018;173(7):1705–1715.e16. https://DOI:10.1016/j.cell.2018.05.046

26. Levine J, Panchalingam K, Rapoport A, Gershon S, McClure RJ, Pettegrew JW. Increased cerebrospinal fluid glutamine levels in depressed patients. Biol. Psychiatry. 20 00;47(7):586–593.

27. Losenkov IS , Bojko AS, Levchuk LA, Simutkin GG, Bohan NA, Ivanova SA. Glutamat syvorotki krovi u bol’nyh depressivnymi rasstrojstvami kak potencial’nyj perifericheskij marker prognoza jeffektivnosti terapii. Nejrohimija. 2018;35(4):359–366. (In Russ.).

28. Lee PH, Perlis RH, Jun g JY, Byrne EM, Rueckert E, Siburian R, Haddad S, Mayerfeld CE, Heath AC, Pergadia ML, Madden PA, Boomsma DI, Penninx BW, Sklar P, Martin NG, Wray NR, Purcell SM, Smoller JW. Multi-locus genome-wide association analysis supports the role of glutamatergic synaptic transmission in the etiology of major depressive disorder. Transl. Psychiatry. 2012;(2):184. https://DOI:10.1038 /tp.2012.95

29. Kornetov AN. Ontogeneticheskie aspekty depressivnyh rasstrojstv. Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2003;103(8):80–81. (In Russ.).


Review

For citations:


Seregin A.A., Smirnova L.P., Dmitrieva E.M., Vasil’eva S.N., Semke A.V., Ivanova S.A. Glutamate Level’s in Blood Serum of Patients with Schisophrenic Spectrum and Bipolar Affective Disorder. Psychiatry (Moscow) (Psikhiatriya). 2020;18(3):22-31. (In Russ.) https://doi.org/10.30629/2618-6667-2020-18-3-22-31

Views: 2005


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)