Platelet Enzymes of Glutathione Metabolism in Patients with Late-Onset Schizophrenic Spectrum Disorders
https://doi.org/10.30629/2618-6667-2020-18-4-41-50
Abstract
Background: basing on the hypothesis that oxidative stress participates in schizophrenia pathogenesis, the authors suggested that the activities of glutathione reductase (GR) and glutathione-S-transferase (GST), the enzymes metabolizing the central antioxidant glutathione, are altered in patients with schizophrenia spectrum disorders.
Objective: determination of activity of platelet glutathione reductase (GR) and glutathione-S-transferase (GST) in patients with late-onset schizophrenic spectrum disorders (LOS - spectrum psychoses) and evaluation of their possible connection to clinical indicators.
Patients and methods: 28 female in-patients aged 45–86 years with LOS-spectrum psychoses were examined: schizophrenia (n = 16), schizoaffective disorder (n = 6), chronic delusional disorder (n = 6). A control group of women of the same age range without mental and neurological diseases was recruited. Platelet GR and GST activities in patients were determined before and after the course of pharmacotherapy, and in the control group - only once.
Results: assessment of the patients’ symptoms’ severity using PANSS, HAMD, and MMSE was carried out before and after the course of pharmacotherapy (at the 28th day of the therapy course). The efficacy of therapy was determined by the change in the PANSS and HAMD total score. While the GR activity did not differ significantly in patients and in the control group, GST activity was found substantially and significantly reduced in patients (before and after the course of therapy) compared with the control group, although GST activity in patients did not significantly change during their treatment. In both cases (GR and GST), three patients were observed among the patients with enzymatic activity exceeding > 1.5 times the medians in the group. After the course of treatment, the activity of enzymes decreased to a level within the range of control values or values for other patients.
Conclusion: the results of a pilot study indicate the promise of determining the activity of GR and GST in a group of patients with LOS-spectrum endogenous psychoses to distinguish among them subgroups with glutathione metabolism abnormalities that correlate with clinical and pathopsychological features.
About the Authors
O. K. SavushkinaRussian Federation
Olga K. Savushkina, PhD, Cand. of Sci. (Biol.), Laboratory of Neurochemistry
Moscow
I. S. Boksha
Russian Federation
Irina S. Boksha, PhD, Dr. of Sci. (Biol.), Laboratory of Neurochemistry
Moscow
E. B. Tereshkina
Russian Federation
Elena B. Tereshkina, PhD, Cand. of Sci. (Biol.), Laboratory of Neurochemistry
Moscow
T. A. Prokhorova
Russian Federation
Tatyana A. Prokhorova, Researcher, Laboratory of Neurochemistry
Moscow
V. S. Sheshenin
Russian Federation
Vladimir S. Sheshenin, MD, PhD, Cand. of Sci. (Med.), Geriatric Psychiatry Department
Moscow
V. V. Pochueva
Russian Federation
Valeriya V. Pochueva, Junior Researcher, Geriatric Psychiatry Department
Moscow
E. A. Vorobyev
Russian Federation
Elena A. Vorobyeva, PhD, Cand. of Sci. (Biol.), Researcher, Laboratory of Neurochemistry
Moscow
G. Sh. Burbaeva
Russian Federation
Gulnur Sh. Burbaeva, Professor, PhD, Dr. of Sci. (Biol.), Head of the Neurochemistry Laboratory
Moscow
References
1. Yao JR, Keshavan MS. Antioxidants, redox signaling and pathophysiology in schizophrenia: an integrative view. Antioxid Redox Signal. 2001;15(7):2011–2035. DOI: 10.1089/ars.2010.3603
2. Yao JK, Leonard S, Reddy R. Altered glutathione redox state in schizophrenia. Dis. Markers. 2006;22(1–2):83–93. DOI: 10.1155/2006/248387
3. Do KQ, Trabesinger AH, Kirsten-Krüger M, Lauer CJ, Dydak U, Hell D, Holsboer F, Boesiger P, Cuénod M. Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. Eur. J. Neurosci. 2000;12(10):3721–3728. DOI: 10.1046/j.1460-9568.2000.00229.x
4. Matsuzawa D, Hashimoto K. Magnetic resonance spectroscopy study of the antioxidant defense system in schizophrenia. Antioxid Redox Signal. 2011;15(7):2057–2065. DOI: 10.1089/ars.2010.3453
5. Gawryluk JW, Wang JF, Andreazza AC, Shao L, Young LT. Decreased levels of glutathione, the major brain antioxidant, in post-mortem prefrontal cortex from patients with psychiatric disorders. Int. J. Neuropsychopharmacol. 2011;14(1):123–130. DOI: 10.1017/S1461145710000805
6. Wu JQ, Kosten TR, Zhang XY. Free radicals, antioxidant defense systems, and schizophrenia. Prog. Neuropsychopharmacol Biol. Psychiatry. 2013;46:200–206. DOI: 10.1016/j.pnpbp.2013.02.015
7. Chien YL, Hwu HG, Hwang TJ, Hsieh MH, Liu CC, Lin-Shiau SY, Liu CM. Clinical implications of oxidative stress in schizophrenia: Acute relapse and chronic stable phase. Prog. Neuropsychopharmacol Biol. Psychiatry. 2020;99:109868. DOI: 10.1016/j.pnpbp.2020.109868
8. Shhigoreva JuG, Smirnova LP, Krotenko NM, Bojko AS, Kornetova EG, Semke AV. Aktivnost’ antioksidantnyh fermentov v jeritrocitah perifericheskoj krovi u bol’nyh shizofreniej s tardivnoj diskineziej. Sovremennye problemy nauki i obrazovanija. 2013;5:341. (In Russ.). https://elibrary.ru/item.asp?id=20992414
9. Krotenko NM, Smirnova LP, Loginov VN, Ivanova AS, Semke AV. Vlijanie nejrolepticheskoj terapii na sostojanie perekisnogo okislenija lipidov i sistemu glutationa u bol’nyh shizofreniej. Sibirskij vestnik psihiatrii i narkologii. 2010;2(59):133–135. (In Russ.). https://elibrary.ru/item.asp?id=15232570
10. Ozornina NV, Ozornin AS, Govorin NV. Possible pathophysiological mechanisms of changes in several cytokines and in the lipid peroxidation and antioxidant defense system in first-episode schizophrenia patients. Neurochemical Journal. 2013;7(3):230–233. (In Russ.). DOI: 10.1134/S1819712413030112
11. Dietrich-Muszalska A, Kwiatkowska A. Generation of superoxide anion radicals and platelet glutathione peroxidase activity in patients with schizophrenia. Neuropsychiatr. Dis. Treat. 2014;10:703–709. DOI: 10.2147/NDT.S60034
12. Su Kang Kim, Sang Wook Kang, Joo-Ho Chung, Hae Jeong Park, Kyu Bong Cho, Min-Su Park. Genetic Polymorphisms of Glutathione-Related Enzymes (GSTM1, GSTT1, and GSTP1) and Schizophrenia Risk: A Meta-Analysis. Int. J. Mol. Sci. 2015;16:19602–19611. DOI: 10.3390/ijms160819602
13. Qiao J, Arthur JF, Gardiner EE, Andrews RK, Zeng L, Xu K. Regulation of platelet activation and thrombus formation by reactive oxygen species. Redox Biol. 2018;14:126–130. DOI: 10.1016/j.redox.2017.08.021
14. Savushkina OK, Boksha IS, Prokhorova TA, Tereshkina EB, Burminskiy DS, Morozova MA, Vorobyeva EA, Burbaeva GS. The activity of erythrocyte and platelet glutathione reductase and glutathione-S-transferase in paranoid schizophrenia. SS Korsakov Journal of Neurology and Psychiatry. 2018;118(11):77–81. (In Russ.). DOI: 10.17116/jnevro201811811177
15. Prokhorova TA, Tereshkina EB, Savushkina OK, Boksha IS, Vorobyeva EA, Omel’chenko MA, Pomytkin AN, Kaleda VG, Burbaeva GS. The activity of enzymes of glutathione metabolism in blood cells of patients with a high risk of manifestation of endogenous psychoses and patients with the first psychotic episod. SS Korsakov Journal of Neurology and Psychiatry. 2019;119(4):47–54. (In Russ.). DOI: 10.17116/jnevro201911904147
16. Tereshkina EB, Savushkina OK, Boksha IS, Prokhorova TA, Vorobyeva EA, Omel’chenko MA, Pomytkin AN, Kaleda VG, Burbaeva GS. Glutathione reductase and glutathione-S-transferase in blood cells in schizophrenia and schizophrenia spectrum disorders. SS Korsakov Journal of Neurology and Psychiatry. 2019;119(2):61–65. (In Russ.). DOI: 10.17116/jnevro201911902161
17. Cheng S-B, Liu H-T, Chen S-Y, Lin P-T, Lai C-Y, Huang Y-C. Changes of Oxidative Stress, Glutathione, and Its Dependent Antioxidant Enzyme Activities in Patients with Hepatocellular Carcinoma before and after Tumor Resection. PLoS ONE. 2017;12(1):e0170016. DOI: 10.1371/journal.pone.0170016
18. Kulinskiy VI, Kolesnichenko LS. Sistema glutationa. 1. Sintez, transport glutationtransferazy, glutationperoksidazy. Biomeditsinskaya khimiya. 2009.55(3):255–277. (In Russ.). https://elibrary.ru/item.asp?id=12462697
19. Deponte M. Glutathione catalysis and the r eaction mechanisms of glutathione dependent enzymes. Biochim. Biophys. Acta. 2013;1830(5):3217–3266. DOI: 10.1016/j.bbagen.2012.09.018
20. Board PG, Menon D. Glutathione transferases, regulators of cellular metabolism and physiology. Biochim. Biophys. Acta. 2013;1830(5):3267–3288. DOI: 10.1016/j.bbagen.2012.11.019
21. Sheshenin VS, Pochueva VV. Late-onset schizophrenia. Psychiatry (Moscow). 2019;1(81):101–110. (In Russ.). DOI: 10.30629/2618-6667-2019-81-101-110
Review
For citations:
Savushkina O.K., Boksha I.S., Tereshkina E.B., Prokhorova T.A., Sheshenin V.S., Pochueva V.V., Vorobyev E.A., Burbaeva G.Sh. Platelet Enzymes of Glutathione Metabolism in Patients with Late-Onset Schizophrenic Spectrum Disorders. Psychiatry (Moscow) (Psikhiatriya). 2020;18(4):41-50. (In Russ.) https://doi.org/10.30629/2618-6667-2020-18-4-41-50