Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Neurophysiological Subtypes of Depressive Disorders

https://doi.org/10.30629/2618-6667-2021-19-2-63-76

Abstract

Background: the clinical polymorphism of depressive disorders, together with the available data on the different responses of patients to treatment, motivate modern neuroscience to search for models that can explain such heterogeneity.

Objective: to identify neurophysiological subtypes of depressive disorders.

Patients and methods: 189 patients with moderate depression in the structure of a depressive episode (n = 42), recurrent depressive (n = 102) and bipolar affective disorders (n = 45); 56 healthy subjects. Clinical-psychopathological, psychometric, neurophysiological and statistical research methods were used in the work.

The results: with the help of coherent EEG analysis, it is possible to identify at least 6 subtypes of the disorder, which characterize various branches of the pathogenesis of affective pathology, which go beyond the currently accepted nomenclature. The selected subtypes were determined by the profi les of dysfunctional interaction of various cortical zones in the alpha, beta and gamma ranges of the EEG. Subtype 1 was characterized by a decrease relative to the norm of imaginary alpha-coherence between the right parietal and left central, right parietal and left anterior temporal, as well as the right parietal and right anterior temporal EEG leads (P4-C3, P4-F7, P4-F8) and explained part of depressions, in the pathogenesis of which the leading role was played by violations of the promotion of positive and suppression of negative affect. Subtype 2 — an increase in beta-2-imaginary-coherence between the frontal leads of the left and right hemispheres, between the left frontal and right central cortex (F3-F4; F3-C4) and its decrease between the central cortical zones (C4-C3), in clinical terms this subtype was characterized by a persistent hedonic response and was associated with the clinical picture of atypical depression. Subtype 3 — an increase in imaginary alpha-coherence between the frontal (F4-F3) and its decrease between the central leads of the left and right hemisphere (C4-C3), correlated with the severity of depressive rumination. Subtype 4 — a decrease in imaginary alpha-coherence between the anterior temporal and frontal, as well as the anterior temporal and central cortex of the right hemisphere (F8-F4 and F8-C4), explained part of the depressions that developed against the background of avoidance personality disorder. Subtype 5 — a decrease in imaginary gamma coherence between the frontal and parietal, as well as the central and occipital cortical zones of the left hemisphere (F3-P3 and C3-O1), was associated with an outwardly oriented utilitarian style of thinking (alexithymia). Subtype 6 — a decrease in imaginary beta-1 coherence between the left central and right anterior temporal cortex (C3-F8), explained part of the depression with phobic and hypochondriacal disorders in the structure of recurrent depressive disorder. Such a clinical and biological typology seems new and promising in terms of searching for specifi c neurophysiological disorders in different types of depression and, accordingly, reaching differentiated therapeutic recommendations.

About the Authors

I. A. Lapin
FSBI “National Medical Research Center for Psychiatry and Narcology” Ministry of Health of Russia
Russian Federation

Igor A. Lapin, MD, PhD, Cand. of Sci. (Med.), Laboratory of Brain Pathology, Head of the Department of Instrumental Diagnostics

Moscow



T. A. Rogacheva
FSBI “National Medical Research Center for Psychiatry and Narcology” Ministry of Health of Russia
Russian Federation

Tatyana A. Rogacheva, MD, PhD, Dr. of Sci. (Med.), Head of the Department of Exogenous Organic Disorders and Epilepsy

Moscow



A. A. Mitrofanov
FSBI “National Medical Research Center for Psychiatry and Narcology” Ministry of Health of Russia
Russian Federation

Andrew A. Mitrofanov, Researcher of Laboratory of Brain Pathology

Moscow



References

1. Davidson RJ, Pizzagalli D, Nitschke JB, Putnam K. Depression: Perspectives from Affective Neuroscience. Annu. Rev. Psychol. 2002;53:545–574. doi: 10.1146/annurev.psych.53.100901.135148

2. Drysdale A, Grosenick L, Downar J, Dunlop K, Mansouri F, Meng Y, Fetcho RN, Zebley B, Oathes DJ, Etkin A, Schatzberg AF, Sudheimer K, Keller J, Mayberg HS, Gunning FM, Alexopoulos GS, Fox MD, Pascual-Leone A, Voss HU, Casey BJ, Dubin MJ, Liston C. Resting-state connectivity biomarkers defi ne neurophysiological subtypes of depression. Nat Med. 2017;23:28–38. doi:10.1038/nm.4246

3. Williams LM. Defi ning biotypes for depression and anxiety based on large-scale circuit dysfunction: a theoretical review of the evidence and future directions for clinical translation. Depress Anxiety. 2017;34(1):9–24. doi: 10.1002/da.22556

4. Fingelkurts AA, Fingelkurts AA, Rytsälä H, Suominen K, Isometsä E, Kähkönen S. Impaired functional connectivity at EEG alpha and theta frequency bands in major depression. Hum. Brain Mapp. 2007;28(3):247–261. doi: 10.1002/hbm.20275

5. Grigor’eva EA, D’jakonov AL, Pevzner AA. Zvukovye garmoniki. Perspektivy ispol’zovanija dlja preodolenija ustojchivogo patologicheskogo sostojanija. Jaroslavl’: Avers pljus, 2017. (In Russ.).

6. Iznak AF. Sovremennye predstavlenija o nejrofi ziologicheskih osnovah depressivnyh rasstrojstv. In: Depressija i komorbidnye rasstrojstva. Pod red. A.B. Smulevicha. M.: RAMN NCPZ. 1997:166–179. (In Russ.).

7. Melnikova TS, Nikiforov AI, Koptelov YM, Pyattnitsky AN, Yakovleva OB. Interhemispheric correlations of brain electric-activity in late depressions. Zhurnal nevropatologii i psikhiatrii imeni S.S. Korsakova. 1992;92(1):88–92. (In Russ.).

8. Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M. Identifying true brain interaction from EEG data using the imaginary part of coherence. Clinical Neurophysiology. 2004;115:2292–2307. doi: 10.1016/j.clinph.2004.04.029

9. Palva S, Palva JM. New vistas for alpha-frequency band oscillations. Trends Neurosci. 2007;30(4):150–158. doi: 10.1016/j.tins.2007.02.001

10. Lamme VA. Towards a true neural stance on consciousness. Trends Cogn. Sci. 2006;10(11):494–501. doi: 10.1016/j.tics.2006.09.001

11. Engel AK, Fries P. Beta-band oscillations–signaling the status quo? Curr. Opin. Neurobiol. 2010;20(2):156–165. doi: 10.1016/j.conb.2010.02.015

12. Ochsner KN, Ray RD, Cooper J, Robertson ER, Chopra S, Gabrieli JDE, James JG. For better or for worse: Neural systems supporting the cognitive down- and up-regulation of negative emotion. Neuroimage. 2004;23:483–499. doi: 10.1016/j.neuroimage.2004.06.030

13. Kim SH, Hamann S. Neural correlates of positive and negative emotion regulation. Journal of Cognitive Neuroscience. 2007;19(5):776–798. doi: 10.1162/jocn.2007.19.5.776

14. Niendam TA, Laird AR, Ray KL, Dean MY, Glahn DC, Carter CS. Meta-analytic evidence for a superordinate cognitive control network subserving diverse executive function. Cogn. Affect. Behav. Neurosci. 2012;12(2):241–268. doi: 10.3758/s13415-011-0083-5

15. Roalf DR, Ruparel K, Gur RE, Bilker W, Gerraty R, Elliott MA, Gallagher RS, Almasy L, Pogue-Geile MF, Prasad K, Wood J, Nimgaonkar VL, Gur RC. Neuroimaging predictors of cognitive performance across a standardized neurocognitive battery. Neuropsychology. 2014;28(2):161–176. doi: 10.1037/neu0000011

16. Elliott R, Baker SC, Rogers RD, O’Leary DA, Paykel ES, Frith CD, Dolan RJ, Sahakian BJ. Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol. Med. 1997;27(4):931–942.

17. Posner J, Hellerstein DJ, Gat I, Mechling A, Klahr K, Wang Z, Peterson BS. Antidepressants normalize the default mode network in patients with dysthymia. JAMA Psychiatry. 2013;70(4):373–382. doi: 10.1001/jamapsychiatry.2013.455

18. Alexopoulos GS, Hoptman MJ, Kanellopoulos D, Murphy CF, Lim KO, Gunning FM. Functional connectivity in the cognitive control network and the default mode network in late-life depression. J. Affect. Disord. 2012;139(1):56–65. doi: 10.1016/j.jad.2011.12.002

19. Shelton RC, Tomarken AJ. Can recovery from depression be achieved? Psychiatr Serv. 2001;52(11):1469–1478. doi: 10.1176/appi.ps.52.11.1469

20. Sprengelmeyer R, Steele JD, Mwangi B, Kumar P, Christmas D, Milders M, Matthews K. The insular cortex and the neuroanatomy of major depression. J. Affect. Disord. 2011;133(1–2):120–127. doi: 10.1016/j.jad.2011.04.004

21. Lee BT, Seong WC, Hyung SK, Lee BC, Choi IG, Lyoo IK, Ham BJ. The neural substrates of affective processing toward positive and negative affective pictures in patients with major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2007;31(7):1487–1492. doi: 10.1016/j.pnpbp.2007.06.030

22. Mulders PC, van Eijndhoven PF, Schene AH, Beckmann CF, Tendolkar I. Resting-state functional connectivity in major depressive disorder: A review. Neurosci. Biobehav. Rev. 2015;56:330–344. doi: 10.1016/j.neubiorev.2015.07.014

23. Neuner I, Arrubla J, Werner CJ, Hitz K, Boers F, Kawohl W. The Default Mode Network and EEG Regional Spectral Power: A Simultaneous fMRI-EEG Study. PLoS ONE. 2014;9(2):e88214. doi: 10.1371/journal.pone.0088214

24. Rigucci S, Serafi ni G, Pompili M, Kotzalidis GD, Tatarelli R. Anatomical and functional correlates in major depressive disorder: The contribution of neuroimaging studies. The World Journal of Biological Psychiatry. 2010;11(2):165–180. doi: 10.1080/15622970903131571

25. Peterson A, Thome J, Frewen P, Lanius RA. Resting- state neuroimaging studies: a new way of identifying differences and similarities among the anxiety disorders? Can. J. Psychiatry. 2014;59(6):294–300. doi: 10.1177/070674371405900602

26. Seminowicz DA, Mayberg HS, McIntosh AR, Goldapple K, Kennedy S, Segal Z, Rafi -Tari S. Limbic-frontal circuitry in major depression: A path modeling metanalysis. Neuroimage. 2004;22(1):409–418. doi: 10.1016/j.neuroimage.2004.01.015

27. Li CT, Wang SJ, Hirvonen J, Hsieh JC, Bai YM, Hong CJ, Liou YJ, Su TP. Antidepressant mechanism of add-on repetitive transcranial magnetic stimulation in medication- resistant depression using cerebral glucose metabolism. J. Affect. Disord. 2010;127(1–3):219–229. doi: 10.1016/j.jad.2010.05.028

28. Cardinal RN, Parkinson JA, Hall J, Everitt BJ. Emotion and motivation: the role of the amygdala, ventral striatum, and prefrontal cortex. Neurosci. Biobehav. Rev. 2002;26(3):321–352. doi: 10.1016/s0149-7634(02) 00007-6

29. Wu QZ, Li DM, Kuang WH, Zhang TJ, Lui S, Huang XQ, Gong QY. Abnormal regional spontaneous neural activity in treatment-refractory depression revealed by resting-state fMRI. Hum. Brain Mapp. 2011;32(8):1290–1299. doi: 10.1002/hbm.21108

30. West ED, Dally PJ. Effects of iproniazid in depressive syndromes. Br. Med. J. 1959;1(5136):1491–1494. doi: 10.1136/bmj.1.5136.1491

31. Guo WB, Liu F, Xue ZM, Xu XJ, Wu RR, Ma CQ, Zhao JP. Alterations of the amplitude of low-frequency fl uctuations in treatment-resistant and treatment-response depression: a resting-state fMRI study. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2012;37(1):153–160. doi: 10.1016/j.pnpbp.2012.01.011

32. Lui S, Wu Q, Qiu L, Yang X, Kuang W, Chan RC, Gong Q. Resting-state functional connectivity in treatment-resistant depression. Am. J. Psychiatry. 2011;168(6):642–648. doi: 10.1176/appi.ajp.2010.10101419

33. Laufs H, Krakow K, Sterzer P, Eger E, Beyerle A, Salek-Haddadi A, Kleinschmidt A. Electroencephalographic signatures of attentional and cognitive default modes in spontaneous brain activity fl uctuations at rest. PNAS. 2003;19(100):11053–11058. doi: 10.1073/pnas.1831638100

34. Sheline YI, Priced JL, Yanb Z, Mintun MA. Resting- state functional MRI in depression unmasks increased connectivity between networks via the dorsal nexus. PNAS. 2010;24(107):11020–11025. doi: 10.1073/pnas.1000446107

35. Hamilton JP, Farmer M, Fogelman P, Gotlib IH. Depressive Rumination, the Default-Mode Network, and the Dark Matter of Clinical Neuroscience. Biol. Psychiatry. 2015;78(4):224–230. doi: 10.1016/j.biopsych.2015.02.020

36. Horn DI, Yu Ch, Steiner J, Buchmann J, Kaufmann J, Osoba AM, Eckert U, Zierhut KC, Schiltz K, He H, Biswal B, Bogerts B, Walter M. Glutamatergic and resting-state functional connectivity correlates of severity in major depression — the role of pregenual anterior cingulate cortex and anterior insula. Frontiers in Systems Neuroscience. 2010;4:33. doi: 10.3389/fnsys.2010.00033

37. Seeley WW, Menon V, Schatzberg AF, Keller J, Glover GH, Kenna H, Reiss AL, Greicius MD. Dissociable Intrinsic Connectivity Networks for Salience Processing and Executive Control. The Journal of Neuroscience. 2007;27(9):2349–2356. doi: 10.1523/JNEUROSCI.5587-06.2007

38. Hamilton JP, Etkin A, Furman DJ, Lemus MG, Johnson RF, Gotlib IH. Functional neuroimaging of major depressive disorder: a meta-analysis and new integration of base line activation and neural response data. Am. J. Psychiatry. 2012;169(7):693–703. doi: 10.1176/appi.ajp.2012.11071105

39. Lai CH, Wu YT. Frontal regional homogeneity increased and temporal regional homogeneity decreased after remission of fi rst-episode drug-naive major depressive disorder with panic disorder patients under duloxetine therapy for 6 weeks. J. Affect. Disord. 2012;136(3):453–458. doi: 10.1016/j.jad.2011.11.004

40. Li B, Liu L, Friston KJ, Shen H, Wang L, Zeng LL, Hu D. A treatment-resistant default mode subnetwork in major depression. Biol. Psychiatry. 2013;74(1):48–54. doi: 10.1016/j.biopsych.2012.11.007

41. Garavan H, Ross RH, Stein EA. Righthemispheric dominance of inhibitory con-trol: an event-related functional MRI study. Proc Nat. Acad. Sci. USA. 1999;96(14):8301–8306. doi: 10.1073/pnas.96.14.8301

42. Konishi S, Nakajima K, Uchida I, Kikyo H, Kameyama M, Miyashita Y. Commoninhibitory mechanism in human inferior prefrontal cortex revealed by eventrelated functional MRI. Brain. 1999;122:981–991. doi: 10.1093/brain/122.5.981

43. Funahashi S, Kubota K. Working memory and prefrontal cortex. Neurosci. Res. 1994;21(1):1–11. doi: 10.1016/0168-0102 (94)90063-9

44. Goldman-Rakic PS. Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In: Mountcastle VB, Plum F, Geiger SR, editors. Handbook of physiology, Bethesda (MD): American Physiological Society. 1987;1(5):373–417. doi: 10.1002/cphy.cp010509

45. Lévesque J, Eugène F, Joanette Y, Paquette V, Mensour B, Beaudoin G, Leroux JM, Bourgouin P, Beauregard M. Neural circuitry underlying voluntary suppression of sadness. Biol. Psychiatry. 2003;53(6):502–510. doi: 10.1016/S0002-3223 (03)01817-6

46. Liston C, Chen AC, Zebley BD, Drysdale AT, Gordon R, Leuchter B, Dubin MJ. Default Mode Network Mechanisms of Transcranial Magnetic Stimulation in Depression. Biol. Psychiatry. 2014;76(7):517–526. doi: 10.1016/j.biopsych.2014.01.023

47. Manoliu A, Meng C, Brandl F, Doll A, Tahmasian M, Scherr M, Schwerthöffer D, Zimmer C, Förstl H, Bäuml J, Riedl V, Wohlschläger AM, Sorg C. Insular dysfunction within the salience network is associated with severity of symptoms and aberrant inter- network connectivity in major depressive disorder. Frontiers in Human Neuroscience. 2014;7:930. doi: 10.3389/fnhum.2013.00930

48. Gordon EM, Laumann TO, Adeyemo B, Huckins JF, Kelley WM, Petersen SE. Generation and Evaluation of a Cortical Area Parcellation from Resting-State Correlations. Cereb. Cortex. 2016;26(1):288–303. doi: 10.1093/cercor/bhu239

49. Peterson BS, Weissman MM. A brain-based endophenotype for major depressive disorder. Annu. Rev. Med. 2011;62:461–474. doi: 10.1146/annurev-med-010510-095632

50. Wang L, Kuang WH, Xu JJ, Lei D, Yang YC. Resting-state brain activation correlates with short-time antidepressant treatment outcome in drug-naive patients with major depressive disorder. J. Int. Med. Res. 2014;42(4):966–975. doi: 10.1177/0300060514533524

51. Downar J, Geraci J, Salomons TV, Dunlop K, Wheeler S, McAndrews MP, Giacobbe P. Anhedonia and Reward- Circuit Connectivity Distinguish Nonresponders from Responders to Dorsomedial Prefrontal Repetitive Transcranial Magnetic Stimulation in Major Depression. Biol. Psychiatry. 2014;76(3):176–185. doi: 10.1016/j.biopsych.2013.10.026

52. Johnstone T, van Reekum CM, Urry HL, Kalin NH, Davidson RJ. Failure to regulate: counterproductive recruitment of top-down prefrontal-subcortical circuitry in major depression. J. Neurosci. 2007;27(33):8877–8884. doi: 10.1523/JNEUROSCI.2063-07.2007

53. Wager TD, Davidson ML, Hughes BL, Lindquist MA, Ochsner KN. Prefrontal-subcortical pathways mediating successful emotion regulation. Neuron. 2008;59(6):1037–1050. doi: 10.1016/j.neuron.2008.09.006

54. Mervaala E, Fohr J, Kononen M, Valkonen-Korhonen M, Vainio P, Partanen K, Partanen J, Tiihonen J, Viinamäki H, Karjalainen AK, Lehtonen J. Quantitative MRI of the hippocampus and amygdala in severe depression. Psychol. Med. 2000;30(1):117–125. doi: 10.1017/S0033291799001567

55. Tebartz van Elst L, Woermann FG, Lemieux L, Trimble MR. Amygdala enlargement in dysthymia: a volumetric study of patients with temporal lobe epilepsy. Biol. Psychiatry. 1999;46(12):1614–1623. doi: 10.1016/S0006-3223 (99)00212-7

56. Veer IM, Beckmann CF, van Tol MJ, Ferrarini L, Milles J, Veltman DJ, Aleman A, van Buchem MA, van der Wee NJ, Rombouts SA. Whole brain resting-state analysis reveals decreased functional connectivity in major depression. Front Syst. Neurosci. 2010;4:41. doi: 10.3389/fnsys.2010.00041

57. Liao W, Qiu C, Gentili C, Walter M, Pan Z, Ding J, Zhang W, Gong Q, Chen H. Altered effective connectivity network of the amygdala in social anxiety disorder: a resting-state FMRI study. PLoS One. 2010;5(12):e15238. doi: 10.1371/journal.pone.0015238


Review

For citations:


Lapin I.A., Rogacheva T.A., Mitrofanov A.A. Neurophysiological Subtypes of Depressive Disorders. Psychiatry (Moscow) (Psikhiatriya). 2021;19(2):63-76. (In Russ.) https://doi.org/10.30629/2618-6667-2021-19-2-63-76

Views: 1012


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)