Медико-биологические и потенциальные терапевтические аспекты использования препарата лития карбоната
https://doi.org/10.30629/2618-6667-2022-20-2-109-116
Аннотация
Обоснование: соль карбоната лития используется в психиатрии при состояниях возбуждения, для предотвращения рецидивов маниакальных и депрессивных эпизодов, а также для лечения агрессивного поведения. Фармакологические характеристики карбоната лития изучены не полностью. В последнее время наблюдается повышение интереса к более широкому использованию препарата, например при терапии нейродегенеративных заболеваний и даже при вирусных инфекциях. Цель: представить обзор наиболее ранних современных зарубежных исследований, освещающих медико-биологические и потенциальные терапевтические аспекты использования препарата карбоната лития не по традиционным показаниям. Материал и методы: по ключевым словам «карбонат лития, нейропротекция, токсичность, болезнь Альцгеймера, коронавирусная инфекция» проводился поиск научных публикаций в базах данных MEDLINE, PubMed, Scopus за период с 1970 по 2021 г. Заключение: по данным анализированных работ, карбонат лития может оказывать значительный эффект на патогенез болезни Альцгеймера, что может стать перспективным в разработке терапии этого до сих пор неизлечимого заболевания. Важно также отметить противовирусные эффекты карбоната лития. В исследованиях показано, что он способен смягчать иммунно-воспалительную активацию, наблюдаемую во время эпизодов биполярного расстройства, включая нормализацию уровней цитокинов. Наиболее интересным является прямое воздействие лития карбоната на некоторых членов семейства коронавирусов, что особенно важно в связи с актуальными проблемами, связанными с вирусом SARS-CoV-2, принявшими масштабы всемирного кризиса общественного здравоохранения.
Ключевые слова
Об авторах
Ю. А. СорокинаРоссия
Юлия Андреевна Сорокина, кандидат биологических наук, доцент кафедры общей и клинической фармакологии
Нижний Новгород
А. А. Мосина
Россия
Анна Алексеевна Мосина, студент
Нижний Новгород
Ю. М. Пахомова
Россия
Юлия Михайловна Пахомова, магистр нейробиологии
Нижний Новгород
А. В. Занозин
Россия
Андрей Владимирович Занозин, кандидат медицинских наук, доцент, врач-психиатр
Нижний Новгород
Список литературы
1. Нуллер ЮЛ, Михаленко ИН. Аффективные психозы. Л.: Медицина: Ленингр. отд-ние. 1988:264 с.
2. Malhi GS, Tanious M, Das P. Coulston CM, Berk M. Potential mechanisms of action of lithium in bipolar disorder. Current understanding. CNS Drugs. 2013;27(2):135–153. doi: 10.1007/s40263-013-00390 PMID: 23371914
3. Grandjean EM, Aubry JM. Lithium: updated human knowledge using an evidence-based approach. CNS Drugs. 2009;23(4):331–349. doi: 10.2165/00023210200923050-00004 PMID: 19374461
4. Yamaguchi D, Tsuji Y, Sonoda M, Shin K, Kito H, Ogami C, Kasai H, To H, Kamimura H. Population Pharmacokinetics and Exposure-Response of Lithium Carbonate in Patients Based on Tubular Reabsorption Mechanisms. Eur J Drug Metab Pharmacokinet. 2019;44(3):329–338. doi: 10.1007/s13318-018-05360 PMID: 30536114
5. Hiemke C, Bergemann N, Clement HW, Conca A, Deckert J, Domschke K, Eckermann G, Egberts K, Gerlach M, Greiner C, Gründer G, Haen E, Havemann-Reinecke U, Hefner G, Helmer R, Janssen G, Jaquenoud E, Laux G, Messer T, Mössner R, Müller MJ, Paulzen M, Pfuhlmann B, Riederer P, Saria A, Schoppek B, Schoretsanitis G, Schwarz M, Gracia MS, Stegmann B, Steimer W, Stingl JC, Uhr M, Ulrich S, Unterecker S, Waschgler R, Zernig G, Zurek G, Baumann P. Consensus Guidelines for Therapeutic Drug Monitoring in Neuropsychopharmacology: Update 2017. Pharmacopsychiatry. 2018;51(1–02):e1. doi: 10.1055/s-0037-1600991 Epub 2018 Feb 1. Erratum for: Pharmacopsychiatry. 2018;51(1–02):9–62. PMID: 29390205
6. Martinez-Maldonado M, Terrell J. Lithium carbonate-induced nephrogenic diabetes insipidus and glucose intolerance. Arch Intern Med. 1973;132(6):881– 4. PMID: 4757260
7. Albert U, De Cori D, Blengino G, Bogetto F, Maina G. Trattamento con litio e potenziali effetti collaterali a lungo termine: una revisione sistematica della letteratura [Lithium treatment and potential long-term side effects: a systematic review of the literature]. Riv Psichiatr. 2014;49(1):12–21. doi: 10.1708/1407.15620
8. Crocamo A, Demola P, Visioli F, Corradi D, Vignali L, Pelà G. Hypertrophic cardiomyopathy and nephrogenic diabetes insipidus associated with chronic lithium carbonate use. Psychiatry Res. 2020;291:113153. doi: 10.1016/j.psychres.2020.113153
9. Guirguis AF, Taylor HC. Nephrogenic diabetes insipidus persisting 57 months after cessation of lithium carbonate therapy: report of a case and review of the literature. Endocr Pract. 2000;6(4):324–328. doi: 10.4158/EP.6.4.324
10. Chan BS, Cheng S, Isoardi KZ, et al. Effect of age on the severity of chronic lithium poisoning. Clin Toxicol (Phila). 2020;58(11):1023–1027. doi: 10.1080/155636 50.2020.1726376
11. Maddala RNM, Ashwal AJ, Rao MS, Padmakumar R. Chronic lithium intoxication: Varying electrocardiogram manifestations. Indian J Pharmacol. 2017;49(1):127–129. doi: 10.4103/ijp.IJP_204_16
12. Mifsud S, Cilia K, Mifsud EL, Gruppetta M. Lithium-associated hyperparathyroidism. Br J Hosp Med (Lond). 2020;81(11):1–9. doi: 10.12968/hmed.2020.0457
13. Phelps JR, Pipitone OR, Squires K, Bale JD. Lamotrigine and lithium in primary care psychiatric consultation: adoption and adverse effects. Fam Pract. 2021;38(4):381–386. doi: 10.1093/fampra/cmaa131
14. Chan BS, Cheng S, Isoardi KZ, Chiew A, Siu W, Shulruf B, Vecellio E, Buckley NA. Effect of age on the severity of chronic lithium poisoning. Clin Toxicol (Phila). 2020;58(11):1023–1027. doi: 10.1080/15563 650.2020.1726376
15. Puiguriguer Ferrando J, Miralles Corrales S, Frontera Juan G, Campillo-Artero C, Barceló Martín B. Poisoning among the elderly [published online ahead of print, 2021 May 21]. Rev Clin Esp (Barc). 2021;S2254 — 8874(21)00071-0. doi: 10.1016/j. rceng.2020.08.004
16. Vodovar D, Lê MP, Labat L, Mégarbane B. Identifying lithium-poisoned patients who may benet from haemodialysis remains highly challenging. Br J Clin Pharmacol. 2020;86(12):2542–2543. doi: 10.1111/ bcp.14366
17. Rogliano PF, Voicu S, Labat L, Deye N, Malissin I, Laplanche JL, Vodovar D, Mégarbane B. Acute Poisoning with Rhabdomyolysis in the Intensive Care Unit: Risk Factors for Acute Kidney Injury and Renal Replacement Therapy Requirement. Toxics. 2020;8(4):79. doi: 10.3390/toxics8040079 PMID: 32998294; PMCID: PMC7711436
18. Kobylianskii J, Austin E, Gold WL, Wu PE. A 54-year-old woman with chronic lithium toxicity. CMAJ. 2021;193(34):E1345–E1348. doi: 10.1503/ cmaj.210725
19. Hedya SA, Avula A, Swoboda HD. Lithium Toxicity. In: StatPearls. Treasure Island (FL): StatPearls Publishing; July 26, 2021. https://pubmed.ncbi.nlm.nih.gov/29763168/
20. Jha A, Pai NM, Ganjekar S, Desai G, Chaturvedi SK. Resurrecting the discussion on neurotoxicity of lithium at therapeutic levels. Int Clin Psychopharmacol. 2021;36(2):106–108. doi: 10.1097/ YIC.0000000000000341
21. Rhee SY, Kim HS. Subcortical Structure Disruption in Diffusion Tensor Tractography of the Patient With the Syndrome of Irreversible Lithium-Effectuated Neurotoxicity Combined With Neuroleptic Malignant Syndrome: A Case Report. Clin Neuropharmacol. 2021;44(2):62–67. doi: 10.1097/ WNF.0000000000000439
22. DiSalvo PC, Furlano E, Su MK, Gosselin S, Hoffman RS. Comparison of the EXtracorporeal TReatments In Poisoning (EXTRIP) and Paris criteria for neurotoxicity in lithium poisoned patients [published online ahead of print, 2021 Mar 12]. Br J Clin Pharmacol. 2021;10.1111/bcp.14802. doi: 10.1111/bcp.14802
23. Verdoux H, Debruyne AL, Queuille E, De Leon J. A reappraisal of the role of fever in the occurrence of neurological sequelae following lithium intoxication: a systematic review. Expert Opin Drug Saf. 2021;20(7):827–838. doi: 10.1080/14740338.2021.1 912011
24. Rowe MK, Chuang DM. Lithium neuroprotection: molecular mechanisms and clinical implications. Expert Rev Mol Med. 2004;6(21):1–18. Published 2004 Oct 18. doi: 10.1017/S1462399404008385
25. Leyhe T, Eschweiler GW, Stransky E, Gasser T, Annas P, Basun H, Laske C. Increase of BDNF serum concentration in lithium treated patients with early Alzheimer’s disease. J Alzheimers Dis. 2009;16(3):649–656. doi: 10.3233/JAD-2009-1004 PMID: 19276559.
26. Böer U, Eglins J, Krause D, Schnell S, Schö C, Knepel W. Enhancement by lithium of cAMP-induced CRE/ CREB-directed gene transcription conferred by TORC on the CREB basic leucine zipper domain. Biochem J. 2007;408(1):69–77. doi: 10.1042/BJ20070796
27. Quiroz JA, Machado-Vieira R, Zarate CA Jr, Manji HK. Novel insights into lithium’s mechanism of action: neurotrophic and neuroprotective effects. Neuropsychobiology. 2010;62(1):50–60. doi: 10.1159/000314310
28. Mehrafza S, Kermanshahi S, Mostadi S, Motaghinejad M, Motevalian M, Fatima S. Pharmacological evidence for lithium-induced neuroprotection against methamphetamine-induced neurodegeneration via Akt-1/GSK3 and CREB-BDNF signaling pathways. Iran J Basic Med Sci. 2019;22(8):856–865. doi: 10.22038/ ijbms.2019.30855.7442
29. Farah R, Khamisy-Farah R, Amit T, Youdim MB, Arraf Z. Lithium’s gene expression prole, relevance to neuroprotection A cDNA microarray study. Cell Mol Neurobiol. 2013;33(3):411–420. doi: 10.1007/s10571013-9907-x
30. Chuang DM. Neuroprotective and neurotrophic actions of the mood stabilizer lithium: can it be used to treat neurodegenerative diseases? Crit Rev Neurobiol. 2004;16(1–2):83–90. doi: 10.1615/critrevneurobiol. v16.i12.90
31. Mann L, Heldman E, Shaltiel G, Belmaker RH, Agam G. Lithium preferentially inhibits adenylyl cyclase V and VII isoforms. Int J Neuropsychopharmacol. 2008;11(4):533–539. doi: 10.1017/ S1461145707008395
32. Manji HK, Chen G. PKC, MAP kinases and the bcl-2 family of proteins as long-term targets for mood stabilizers. Mol Psychiatry. 2002;7(Suppl.1):S46–S56. doi: 10.1038/sj.mp.4001018
33. Soria Lopez JA, González HM, Léger GC. Alzheimer’s disease. Handb Clin Neurol. 2019;167:231–255. doi: 10.1016/B978-0-12-804766-8.00013-3
34. O’Brien RJ, Wong PC. Amyloid precursor protein processing and Alzheimer’s disease. Annu Rev Neurosci. 2011;34:185–204. doi: 10.1146/annurev-neuro-061010-113613
35. Reiss AB, Arain HA, Stecker MM, Siegart NM, Kasselman LJ. Amyloid toxicity in Alzheimer’s disease. Rev Neurosci. 2018;29(6):613–627. doi: 10.1515/revneuro-2017-0063
36. Selkoe DJ. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 2001;81(2):741–766. doi: 10.1152/physrev.2001.81.2.741
37. Mullane K, Williams M. Preclinical Models of Alzheimer’s Disease: Relevance and Translational Validity. Curr Protoc Pharmacol. 2019;84(1):e57. doi: 10.1002/ cpph.57
38. Briggs R, Kennelly SP, O’Neill D. Drug treatments in Alzheimer’s disease. Clin Med (Lond). 2016;16(3):247– 253. doi: 10.7861/clinmedicine.16-3-247
39. Pinheiro L, Faustino C. Therapeutic Strategies Targeting Amyloid-β in Alzheimer’s Disease. Curr Alzheimer Res. 2019;16(5):418–452. doi: 10.2174/1567 205016666190321163438
40. Wong KH, Riaz MK, Xie Y, Zhang X, Liu Q, Chen H, Bian Z, Chen X, Lu A, Yang Z. Review of Current Strategies for Delivering Alzheimer’s Disease Drugs across the Blood-Brain Barrier. Int J Mol Sci. 2019;20(2):381. Published 2019 Jan 17. doi: 10.3390/ijms20020381
41. Panza F, Lozupone M, Solfrizzi V, Watling M, Imbimbo BP. Time to test antibacterial therapy in Alzheimer’s disease. Brain. 2019;142(10):2905–2929. doi: 10.1093/brain/awz244
42. Wang S, Colonna M. Microglia in Alzheimer’s disease: A target for immunotherapy. J Leukoc Biol. 2019;106(1):219–227. doi: 10.1002/JLB.MR0818-319R
43. Chu LW. Alzheimer’s disease: early diagnosis and treatment. Hong Kong Med J. 2012;18(3):228–237.
44. Pedersen JT, Sigurdsson EM. Tau immunotherapy for Alzheimer’s disease. Trends Mol Med. 2015;21(6):394– 402. doi: 10.1016/j.molmed.2015.03.003
45. Loureiro JC, Pais MV, Stella F, Radanovic M, Teixeira AL, Forlenza OV, de Souza LC. Passive antiamyloid immunotherapy for Alzheimer’s disease. Curr Opin Psychiatry. 2020;33(3):284–291. doi: 10.1097/ YCO.0000000000000587
46. Sun BL, Li WW, Zhu C, Jin WS, Zeng F, Liu YH, Bu XL, Zhu J, Yao XQ, Wang YJ. Clinical Research on Alzheimer’s Disease: Progress and Perspectives. Neurosci Bull. 2018;34(6):1111–1118. doi: 10.1007/s12264018-0249-z Epub 2018 Jun 28. PMID: 29956105; PMCID: PMC6246849
47. Won E, Kim YK. An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci. 2017;18(12):2679. Published 2017 Dec 11. doi: 10.3390/ijms18122679
48. Snitow ME, Bhansali RS, Klein PS. Lithium and Therapeutic Targeting of GSK-3. Cells. 2021;10(2): 255. Published 2021 Jan 28 . doi: 10.3390/cells10020255
49. Jope RS. Lithium and GSK-3: one inhibitor, two inhibitory actions, multiple outcomes. Trends Pharmacol Sci. 2003;24(9):441–443. doi: 10.1016/S01656147(03)00206-2
50. Баймеева НВ, Мирошниченко ИИ. N-ацетиласпартат — биомаркер психических и неврологических нарушений. Журнал неврологии и психиатрии имени С.С. Корсакова. 2015;115(8):94–98. doi: 10.17116/jnevro20151158194-98
51. Costemale-Lacoste JF, Guilloux JP, Gaillard R. The role of GSK-3 in treatment-resistant depression and links with the pharmacological effects of lithium and ketamine: A review of the literature. Encephale. 2016;42(2):156–164. doi: 10.1016/j.encep.2016.02.003
52. Young W. Review of lithium effects on brain and blood. Cell Transplant. 2009;18(9):951–975. doi: 10.3727/096368909X471251
53. Avila J, Hernández F. GSK-3 inhibitors for Alzheimer’s disease. Expert Rev Neurother. 2007;7(11):1527–1533. doi: 10.1586/14737175.7.11.1527
54. Macdonald A, Briggs K, Poppe M, Higgins A, Velayudhan L, Lovestone S. A feasibility and tolerability study of lithium in Alzheimer’s disease. Int J Geriatr Psychiatry. 2008;23(7):704–711. doi: 10.1002/gps.1964 PMID: 18181229
55. Aprahamian I, Santos FS, dos Santos B, Talib L, Diniz BS, Radanovic M, Gattaz WF, Forlenza OV. Longterm, low-dose lithium treatment does not impair renal function in the elderly: a 2-year randomized, placebo-controlled trial followed by single-blind extension. J Clin Psychiatry. 2014;75(7):e672– — 678. doi: 10.4088/JCP.13m08741 PMID: 25093483
56. Hampel H., Lista S. Use Of Biomarkers And Imaging To Assess Pathophysiology, Mechanisms Of Action And Target Engagement. The Journal of Nutrition, Health & Aging. 2013;1:54–63.
57. Adhikari SP, Meng S, Wu YJ, Mao YP, Ye RX, Wang QZ, Sun C, Sylvia S, Rozelle S, Raat H, Zhou H. Epidemiology, causes, clinical manifestation and diagnosis, prevention and control of coronavirus disease (COVID-19) during the early outbreak period: a scoping review. Infect Dis Poverty. 2020;9(1):29. doi: 10.1186/s40249-020-00646-x PMID: 32183901; PMCID: PMC7079521
58. Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, Müller MA, Drosten C, Pöhlmann S. SARSCoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell. 2020;181(2):271–280.e8. doi: 10.1016/j. cell.2020.02.052 Epub 2020 Mar 5. PMID: 32142651; PMCID: PMC7102627
59. Nassar A, Azab AN. Effects of lithium on inammation. ACS Chem Neurosci. 2014;5(6):451–458. doi: 10.1021/cn500038f
60. Gillis A. Lithium in herpes simplex. Lancet. 1983;2(8348):516. PMID: 6136673.
61. Rybakowski JK. Antiviral and immunomodulatory effect of lithium. Pharmacopsychiatry. 2000;33(5):159– 164. PMID: 11071016.
62. Amsterdam JD, Maislin G, Potter L, Giuntoli R. Reduced rate of recurrent genital herpes infections with lithium carbonate. Psychopharmacol Bull. 1990;26(3):343–347. PMID: 2125737.
63. Gómez-Bernal G. Lithium for the 2019 novel coronavirus. Med Hypotheses. 2020;142:109822. doi: 10.1016/j.mehy.2020.109822
64. Nowak JK, Walkowiak J. Lithium and coronaviral infections. A scoping review. F1000Res. 2020;9:93. Published 2020 Feb 7. doi: 10.12688/f1000research.22299.2
65. Murru A, Manchia M, Hajek T, Nielsen RE, Rybakowski JK, Sani G, Schulze TG, Tondo L, Bauer M. Lithium’s antiviral effects: a potential drug for CoViD-19 disease? Int J Bipolar Disord. 2020;8(1):21. Published 2020 May 20. doi: 10.1186/s40345-020-00191-4
66. Rajkumar RP. Lithium as a candidate treatment for COVID-19: Promises and pitfalls. Drug Dev Res. 2020;81(7):782–785. doi: 10.1002/ddr.21701
67. Harrison SM, Tarpey I, Rothwell L, Kaiser P, Hiscox JA. Lithium chloride inhibits the coronavirus infectious bronchitis virus in cell culture. Avian Pathol. 2007;36(2):109–114. doi: 10.1080/03079450601156083
68. Ren X, Meng F, Yin J, Li G, Li X, Wang Ch, Herrler G. Action mechanisms of lithium chloride on cell infection by transmissible gastroenteritis coronavirus. PLoS One. 2011;6(5):e18669. Published 2011 May 6. doi: 10.1371/journal.pone.0018669
69. Eddy S, Tillman M, Maddukuri L, Ketkar A, Zafar MK, Eoff RL. Human Translesion Polymerase κ Exhibits Enhanced Activity and Reduced Fidelity Two Nucleotides f rom G-Quadruplex DNA. Biochemistry. 2016;55(37):5218–5229. doi: 10.1021/acs.biochem.6b00374
70. Grard G, Moureau G, Charrel RN, Lemasson J-J, Gonzalez J-P, Gallian P, Gritsun TS, Holmes EC, Gould EA, de Lamballerie X. Genetic characterization of tick-borne aviviruses: new insights into evolution, pathogenetic determinants and taxonomy. Virology. 2007;361(1):80–92. doi: 10.1016/j.virol.2006.09.015
71. Vandevoorde V, Haegeman G, Fiers W. TNF-mediated IL6 gene expression and cytotoxicity are co-inducible in TNF-resistant L929 cells. FEBS Lett. 1992;302(3):235–238. doi: 10.1016/00145793(92)80449-q
72. Park H-J, Kim H-J, Bae G-S, Seo S-W, Kim D-Y, Jung W-S, Kim M-S, Song M-Y, Kim E-K, Kwond K-B, Hwang S-Y, Song H-J, Park C-S, Park R-K, Chong M-S, Park S-J. Selective GSK-3beta inhibitors attenuate the cisplatin-induced cytotoxicity of auditory cells. Hear Res. 2009;257(1–2):53–62. doi: 10.1016/j. heares.2009.08.001
Рецензия
Для цитирования:
Сорокина Ю.А., Мосина А.А., Пахомова Ю.М., Занозин А.В. Медико-биологические и потенциальные терапевтические аспекты использования препарата лития карбоната. ПСИХИАТРИЯ. 2022;20(2):109-116. https://doi.org/10.30629/2618-6667-2022-20-2-109-116
For citation:
Sorokina Yu.A., Mosina A.A., Pakhomova Yu.M., Zanozin A.V. Biomedical and Potential Therapeutic Aspects of Lithium Carbonate Use. Psychiatry (Moscow) (Psikhiatriya). 2022;20(2):109-116. (In Russ.) https://doi.org/10.30629/2618-6667-2022-20-2-109-116