Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Hypothalamo-Pituitary-Adrenal Axis in Depressive Disorders and Treatment Resistance

https://doi.org/10.30629/2618-6667-2023-21-1-73-90

Abstract

Background: hypothalamo-pituitary-adrenal (HPA) axis plays an important role in the pathogenesis of depression. Patterns of HPA functioning depend on both biologic factors and psychological background, which, taken together, may increase the risk of depression later on. Objective: to analyze scientific publications on pathophysiology of depression, linked to HPA disruption, assess causal relationship between hypercorticism and depression, role of hypercorticism in clinical symptoms and course of depressive disorder.

Material and methods: according to the key words “hypercortiсism”, “depression disorder”, “cortisol”, “treatment resistant depression”, “Cushing’s syndrome”, “Сushing’s disease”, a search was conducted for publications in databases Medline/ PubMed, Scopus, Web of Science, RSCI and other resources.

Conclusion: there is a high comorbidity between depressive disorders and HPA axis abnormalities, including endocrine disorders with both increased and decreased cortisol secretion. Hypercorticism related to Сushing’s disease or Cushing’s syndrome is often associated with irreversible mental disorders, especially anxiety and depressive disorders, which persist after normalization of cortisol levels. Depressive patients are characterized by persistently elevated cortisol levels and their non-supression in the 1 mg dexamethasone suppression test (DST); however, sometimes they have reduced cortisol secretion. The possible pathophysiology mechanisms of hypercorticism are discussed. Beside hypercorticism, increased level of adrenocorticotropic hormone (ACTH) and decreased secretion of ACTH after CRH stimulation are demonstrated. It has been demonstrated that elevation of cortisol levels may precede the development of depression and as such can be used as marker of increased depression risk. Hypercorticism in patients with depression may promote its increased severity and transform ation of depressive symptoms. Persistent hypercorticism and non-supression of cortisol in DST are predictors of poor outcomes. HPA dysfunction seems to play an essential role in evolvement of treatment resistant depression. There is data on the efficacy of drugs modifying HPA activity for amelioration of affective disorders and psychotic symptoms in patients with depression. Further research into HPA functioning in patients with depression are needed to clarify pathogenetic mechanisms and development of newer treatment approaches to depression.

About the Authors

O. A. Yunilayne
FSBSI “Mental Health Research Centre”
Russian Federation

Olga A. Yunilaynen, Candidate of Medical Sciences

Moscow



E. G. Starostina
M.F. Vladimirsky Moscow Regional Research Clinical Institute
Russian Federation

Elena G. Starostina, Dr. of Sci. (Med.), Department of endocrinology

Moscow



I. V. Oleichik
FSBSI “Mental Health Research Centre”
Russian Federation

Igor V. Oleichik, Dr. of Sci. (Med.)

Moscow



References

1. Gorodnichev AV, Kostjukova EG, Mosolov SN. Dostizhenie remissii kak osnovnaja cel’ dlitel’noj terapii rekurrentnogo depressivnogo rasstrojstva. Sovremennaja terapija psihicheskih rasstrojstv. 2009;1:5–10. (In Russ.).

2. Jesulola E, Micalos P, Baguley IJ. Understanding the pathophysiology of depression: From monoamines to the neurogenesis hypothesis model — are we there yet? Behav Brain Res. 2018;341(2):79–90. doi: 10.1016/j.bbr.2017.12.025

3. Leonard BE. Neurochemical and Neuropharmacolo gical Aspects of Depression. Int Rev Neurobiol. 1975;18:357– 387. doi: 10.1016/s0074-7742(08)60039-2

4. Amsterdam JD, Hornig M, Nierenberg AA. Treatment-resistant mood disorders. Cambrige University Press: Cambrige, UK. 2001:57.

5. Kas’janov ED, Mazo GJe. Funkcionirovanie gipotalamo-gipo zarno-nadpochechnikovoj osi pri depressii: aktual’noe sostojanie problemy. Psihicheskoe zdorov’e. 2017;15(8):27–34. (In Russ.).

6. Piasecka M, Papakokkinou E, Valassi E, Santos A, Webb SM, de Vries F, Pereira AM, Ragnarsson O. Psychiatric and neurocognitive consequences of endogenous hypercortisolism. J Intern Med. 2020;288(2):168–182. doi: 10.1111/joim.13056

7. Pivonello R, Simeoli C, De Martino CM, Cozzolino A, De Leo M, Iacuaniello D, Pivonello C, Negri M, Pellecchia MT, Iasevoli F, Colao A. Neuropsychiatric disorders in Cushing’s syndrome. Front Neurosci. 2015;9:129. doi: 10.3389/fnins.2015.00129

8. Dorn LD, Burgess ES, Dubbert B, Simpson SE, Friedman T, Kllng M, Chrousos GP. Psychopathology in patients with endogenous Cushing’s syndrome: “atypical” or melancholic features. Clin Endocrinol. (Oxf). 1995;43(4):433–442. doi: 10.1111/j.1365-2265.1995.tb02614.x

9. Dorn LD, Burgess ES, Friedman TC, Dubbert B, Gold PW, Chrousos GP. The longitudinal course of psychopathology in Cushing’s syndrome after correction of hypercortisolism. J Clin Endocrinol Metab. 1997;82(3):912–919. doi: 10.1210/jcem.82.3.3834

10. Hasket RF. Diagnostic categorization of psychiatric disturbance in Cushing’s syndrome. Am J Psychiatry. 1985;142(8):911–916. doi: 10.1176/ajp.142.8.911

11. Starkman MN, Schteingart DE, Schork MA. Depressed Mood and Other Psychiatric Manifestations of Cushing’s Syndrome: Relationship to Hormone Levels. Psychosom Med. 1981;43(1):3–18. doi: 10.1097/00006842-198102000-00002

12. Bobrov AE, Starostina EG, Aleksandrova MM, Almaev DR, Pavlova MG, Komerdus IV, Belaja ZhE, Mel’nichenko GA. Psihicheskie narushenija u pacientov s gormonal’no aktivnymi adenomami gipo za. Social’naja i klinicheskaja psihiatrija. 2018;28(4);5–10. (In Russ.).

13. Loosen PT, Chambliss B, DeBold CR, Shelton R, Orth DN. Psychiatric Phenomenology in Cushing’s Disease. Pharmacopsychiatry.1992;25(4):192–198. doi: 10.1055/s-2007-1014405

14. Kelly WF. Psychiatric aspects of Cushing’s syndrome. QJ Med. 1996;89(7):543–551. doi: 10.1093/qjmed/89.7.543

15. Kelly WF, Kelly MJ, Faragher B. A prospective study of psychiatric and psychological aspects of Cushing’s syndrome. Clin Endocrinol (Oxf). 1996;45(6):715–720. doi: 10.1046/j.1365-2265.1996.8690878.x

16. Tiemensma J, Biermasz NR, Middelkoop HM, van der Mast RC, Romijn JA, Pereira AM. Increased prevalence of psychopathology and maladaptive personality traits after long-term cure of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(10):E129–141. doi: 10.1210/jc.2010-0512

17. Tiemensma J, Kokshoorn NE, Biermasz NR, Keijser BJ, Wassenaar MJ, Middelkoop HA, Pereira AM, Romijn JA. Subtle cognitive impairments in patients with long-term cure of Cushing’s disease. J Clin Endocrinol Metab. 2010;95(6):2699–2714. doi: 10.1210/jc.2009-2032

18. Ragnarsson O, Johannsson G. Cushing’s syndrome: a structured short- and long-term management plan for patients in remission. Eur J Endocrinol. 2013;169(5):R139–152. doi: 10.1530/eje-13-0534

19. Uzbekov MG, Maksimova NM. Monoamine-hormonal interactions in the pathogenesis of anxious depression. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2015;115(1–2):52–55. (In Russ.). doi: 10.17116/jnevro20151151252-55

20. Brown SL, Praag HM. The Role of Serotonin in Psychiatric Disorders. Brunner/Mazel, Publisher: New York. 1991;215.

21. Bruce SM. The Brain on Stress: Toward an Integrative Approach to Brain, Body and Behavior. Perspect Psychol Sci. 2013;8(6):673–675. doi: 10.1177/1745691613506907

22. Sapolsky RM, Uno H, Rebert CS, Finch CE. Hippocampal Damage Associated with Prolonged Glucocorticoid Exposure in Primates. J Neurosci. 1990;10(9):2897–2902. doi: 10.1523/JNEUROSCI.10-09-02897.1990

23. Maheu FS, Mazzone L, Merke DP, Keil MF, Stratakis CA, Pine DS, Ernst M. Altered amygdala and hippocampus function in adolescents with hypercortisolemia: A functional magnetic resonance imaging study of Cushing syndrome. Dev Psychopathol. 2008;20(4):1177–1189. doi: 10.1017/S0954579408000564

24. Stewart PM, Biller BM, Marelli C, Gunnarsson C, Ryan MP, Johannsson G. Exploring Inpatient Hospitalizations and Morbidity in Patients With Adrenal Insuf ciency. J Clin Endocrinol Metab. 2016;101(12):4843–4850. doi: 10.1210/jc.2016-2221

25. Bleicken B, Hahner S, Ventz M, Quinkler M. Delayed Diagnosis of Adrenal Insuf ciency Is Common: A Cross-Sectional Study in 216 Patients. Am J Med Sci. 2010;339(6):525–531. doi: 10.1097/maj.0b013e3181db6b7a

26. Tirabassi G, Boscaro M, Arnaldi G. Harmful effects of functional hypercortisolism: a working hypothesis. Endocrine. 2014;46(3):370–386. doi: 10.1007/s12020-013-0112-y

27. Troshina EA, Bel’cevich DG, Molashenko NV, Gazizova DO. Diagnostika, differencial’naja diagnostika i lecheniej endogennogo giperkorticizma. Problemy jendokrinologii. 2010;56(2):53–63. (In Russ.).

28. Shepel’kevich AP, Dydyshko JuV, Holodova EA. Patogeneticheskie aspekty i problemnye voprosy rannej diagnostiki subklinicheskogo giperkorticizma. Lechebnoe delo: nauchno-prakticheskij terapevticheskij zhurnal. 2013;5(33):76–82. (In Russ.).

29. Mel’nichenko GA, Dedov II, Belaja ZhE, Rozhinskaja LJa, Vagapova GR, Volkova NI, Grigor’ev AJu, Grineva EN, Marova EI, Mkrtumjan AM, Trunin JuJu, Cherebillo VJu. Bolezn’ Icenko–Kushinga: klinika, diagnostika, differencial’naja diagnostika, metody lechenija. Problemy jendokrinologii. 2015;61(2):55– 77. (In Russ.).

30. Min L. Functional hypercortisolism, visceral obesity and metabolic syndrome. Endocr Pract. 2016;22(4):506–508. doi: 10.4158/EP161197.CO

31. Papanicolaou DA, Yanovski JA, Cutler GB, Chrousos GP, Nieman LK. A single midnight serum cortisol measurement distinguishes Cushing’s syndrome from pseudo-Cushing states. J Clin. Endocrinol. Metab. 1998;83(4):1163–1167. doi: 10.1210/jcem.83.4.4733

32. Nieman LK, Biller BMK, Findling JW, Murad MH, Newell-Price J, Savage MO, Tabarin A. Treatment of Cushing’s Syndrome: An Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab. 2015;100(8):2807–2831. doi: 10.1210/jc.2015-1818

33. Van Rossum EFC, Binder EB, Majer M, Koper JW, Ising M, Modell S, Salyakina D, Lamberts SWJ, Holsboer F. Polymorphisms of the glucocorticoid receptor gene and major depression. Biol Psychiatry. 2006;59(8):681– 688. doi: 10.1016/j.biopsych.2006.02.007

34. Rao U, Hammen CL, Poland RE. Risk Markers for Depression in Adolescents: Sleep and HPA Measures. Neuropsychopharmacology. 2009;34(8):1936–1945. doi: 10.1038/npp.2009.27

35. Le Moult J, Ordaza SJ, Kircanski K, Singh MK, Gotlib IH. Predicting First Onset of Depression in Young Girls: Interaction of Diurnal Cortisol and Negative Life Events. J Abnorm Psychol. 2015;124(4):850–859. doi: 10.1037/abn0000087

36. Adam EK, Doane LD, Zinbarg RE, Mineka S, Craske MG, Grif th JW. Prospective prediction of major depressive disorder from cortisol awakening responses in adolescence. Psychoneuroendocrinology. 2010;35(6):921– 931. doi: 10.1016/j.psyneuen.2009.12.007

37. Ellenbogen MA, Hodgins S, Linnen A-M, Ostiguy CS. Elevated daytime cortisol levels: A biomarker of subsequent major affective disorder? J Affect Disord. 2011;132(1–2):265–269. doi: 10.1016/j.jad.2011.01.007

38. Verduijn J, Milaneschi Y, Schoevers RA, van Hemert AM, Beekman ATF, Penninx BWJH. Pathophysiology of major depressive disorder: mechanisms involved in etiology are not associated with clinical progression. Transl Psychiatry. 2015;5(9):e649. doi: 10.1038/tp.2015.137

39. Zajkowska Z, Gullett N, Walsh A, Zonca V, Pedersen GA, Souza L, Kieling C, Fisher HL, Kohrt BA, Mondelli V. Cortisol and development of depression in adolescence and young adulthood — a systematic review and meta-analysis. Psychoneuroendocrinology. 2022;136:105625. doi: 10.1016/j.psyneuen.2021.105625

40. Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):321–338. doi: 10.1038/s41380-019-0585-z

41. Ju Y, Wang M, Lu X, Sun J, Dong Q, Zhang L, Liu B, Liu J, Yan D, Guo H, Zhao F, Liao M, Zhang X, Zhang Y, Li L. The effects of childhood trauma on the onset, severity and improvement of depression: the role of dysfunctional attitudes and cortisol levels. J Affect Disord. 2020;276:402–410. doi: 10.1016/j.jad.2020.07.023

42. Heim C, Newport DJ, Bonsall R, Miller AH, Nemeroff CB. Altered pituitary-adrenal axis responses to provocative challenge tests in adult survivors of childhood abuse. Am J Psychiatry. 2001;158(4):575– 581. doi: 10.1176/appi.ajp.158.4.575

43. Maripuu M, Wikgren M, Karling P, Adolfsson R, Norrback KF. Relative hypo- and hypercortisolism are both associated with depression and lower quality of life in bipolar disorder: a cross-sectional study. PLoS One. 2014;9(6):e98682. doi: 10.1371/journal.pone.0098682

44. Stetler C, Miller GE. Depression and Hypothalamic-Pituitary-Adrenal Activation: A Quantitative Summary of Four Decades of Research. Psychosom Med. 2011;73(2):114–126. doi: 10.1097/PSY.0b013e31820ad12b

45. Gold PW, Chrousos GP. Organization of the stress system and its dysregulation in melancholic and atypical depression: high vs low CRH/NE states. Mol Psychiatry. 2002;7(3):254–275. doi: 10.1038/sj.mp.4001032

46. Gold PW, Kling MA, Khan I, Calabrese JR, Kalogeras K, Post RM, Avgerinos PC, Loriaux DL, Chrousos GP. Corticotropin releasing hormone: relevance to normal physiology and to the pathophysiology and differential diagnosis of hypercortisolism and adrenal insuf ciency. Adv Biochem Psychopharmacol.1987;43:183–200.

47. Gold PW, Licinio J, Wong ML, Chrousos GP. Corticotropin Releasing Hormone in the Pathophysiology of Melancholic and Atypical Depression and in the Mechanism of Action of Antidepressant Drugs. Ann N Y Acad Sci. 1995;771:716–729. doi: 10.1111/j.1749-6632.1995.tb44723

48. Parker KJ, Schatzberg AF, Lyons DM. Neuroendocrine aspects of hypercortisolism in major depression. Horm Behav. 2003;43(1):60–66. doi: 10.1016/s0018506x(02)00016-8

49. Knorr U, Vinberg M, Kessing LV, Wetterslev J. Salivary cortisol in depressed patients versus control persons: a systematic review and meta-analysis. Psychoneuroendocrinology. 2010;35(9):1275–1286. doi: 10/1016/j.psyneuen.2010.04.001

50. Levchuk LA, Vjalova NM, Simutkin GG, Ivanova SA, Bohan NA. Uroven’ kortizola u pacientov s affektivnymi rasstrojstvami: associacija s nozologicheskoj formoj. Vestnik ural’skoj medicinskoj akademicheskoj nauki. 2014;3(49):217–218. (In Russ.).

51. Kochetkov JaA, Bel’tikova KV, Gorobec LN. Gormonal’nye markjory anabolicheskogo balansa pri depressii. Psihofarmakologija i biologicheskaja narkologija. 2008;8(1):2367–2368. (In Russ.).

52. Uzbekov MG, Maksimova NM. Nekotorye nejrobiologicheskie aspekty patogeneza trevozhnoj depressii i antigljukokortikoidnaja farmakoterapija. Rossijskij psihiatricheskij zhurnal. 2018;2:31–39. (In Russ.).

53. Høifødt RS, Waterloo K, Wang CEА, Eisemann M, Figenschau Y, Halvorsen M. Cortisol levels and cognitive pro le in major depression: A comparison of currently and previously depressed patients. Psychoneuroendocrinology. 2019;99:57–65. doi: 10.1016/j.psyneuen.2018.08.024

54. Strickland PL, Deakin JFW, Percival C, Dixon J, Gater RA, Goldberg DP. Bio-social origins of depression in the community. Interactions between social adversity, cortisol and serotonin neurotransmission. Br J Psychiatry. 2002;180:168–173. doi: 10.1192/bjp.180.2.168

55. Brouwer JP, Appelhof BC, Hoogendijk WJG, Huyser J, Endert E, Zuketto C, Schene AH, Tijssen JGP, Dyck RV, Wiersinga WM, Fliers E. Thyroid and adrenal axis in major depression: a controlled study in outpatients. Eur J Endocrinol. 2005;152(2):185–191. doi: 10.1530/eje.1.01828

56. Arana GW, Baldessarini RJ, Ornsteen M. The dexamethasone suppression test for diagnosis and prognosis in psychiatry. Commentary and review. Arch Gen Psychiatry. 1985;42(12):1193–1204. doi: 10.1001/archpsyc.1985.01790350067012

57. Heim C, Ehlert U, Hellhammer DH. The potential role of hypocortisolism in the pathophysiology of stress-related bodily disorders. Psychoneuroendocrinology. 2000;25(1):1–35. doi: 10.1016/s0306-4530(99)00035-9

58. Gupta D, Morley JE. Hypothalamic-Pituitary-Adrenal (HPA) Axis and Aging. Compr Physiol. 2014;4(4):1495– 1510. doi: 10.1002/cphy.c130049

59. Moffat SD, An Y, Resnick SM, Diamond MP, Ferrucci L. Longitudinal Change in Cortisol Levels Across the Adult Life Span. J Gerontol A Biol Sci Med Sci. 2020;75(2):394–400. doi: 10.1093/gerona/gly279

60. Bhagwagar Z, Ha zi S, Cowen PJ. Increase in concentration of waking salivary cortisol in recovered patients with depression. Am J Psychiatry. 2003;160(10):1890–1891. doi: 10.1176/appi.ajp.160.10.1890

61. Vreeburg SA, Hoogendijk WJG, van Pelt J, Derijk RH, Verhagen JCM, van Dyck R, Smit JH, Zitman FG, Penninx BWJH. Major Depressive Disorder and Hypothalamic-Pituitary-Adrenal Axis Activity. Arch Gen Psychiatry. 2009;66(6):617–626. doi: 10.1001/archgenpsychiatry.2009.50

62. Oldehinkel AJ, van den Berg MD, Flentge F, Bouhuys AL, ter Horst GJ, Ormel J. Urinary free cortisol excretion in elderly persons with minor and major depression. Psychiatry Res. 2001;104(1):39–47. doi: 10.1016/s0165-1781(01)00300-6

63. O’Keane V, Dinan TG, Scott L, Corcoran C. Changes in Hypothalamic-Pituitary-Adrenal Axis Measures After Vagus Nerve Stimulation Therapy in Chronic Depression. Biol Psychiatry. 2005;58(12):963–968. doi: 10.1016/j.biopsych.2005.04.0

64. Watson S, Gallagher P, Del-Estal D, Hearn A, Ferrier IN, Young AH. Hypothalamic-pituitary-adrenal axis function in patients with chronic depression. Psychol Med. 2002;32(6):1021–1028. doi: 10.1017/s0033291702005998

65. Künzel HE, Binder EB, Nickel T, Ising M, Fuschs B, Majer M, Pfennig A, Ernst G, Kern N, Schmid DA, Uhr M, Holsboer F, Modell M. Pharmacological and nonpharmacological factors inuencing hypothalamic-pituitary-adrenocortical axis reactivity in acutely depressed psychiatric in-patients, measured by the Dex-CRH test. Neuropsychopharmacol. 2003;28:2169– 2178. doi: 10.1038/sj.npp.1300280

66. Meador-Woodruff JH, Gurguis G, Grunhaus L, Haskett RF, Greden JF. Multiple depressive episodes and plasma postdexamethasone cortisol levels. Biol Psychiatry. 1987;22(5):583–592. doi: 10.1016/00063223(87)90186-7

67. Nelson JC, Davis JM. DST Studies in Psychotic Depression: A Meta-Analysis. Am J Psychiatry. 1997;154(11):1497–1503. doi: 10.1176/ajp.154.11.1497

68. Jain FA, Connolly CG, Reus VI, Meyerhoff DJ, Yang TT, Mellon SH, Mackin S, Hough CM, Morford A, Wolkowitz OM. Cortisol, moderated by age, is associated with antidepressant treatment outcome and memory improvement in Major Depressive Disorder: A retrospective analysis. Psychoneuroendocrinology. 2019;109:104386. doi: 10.1016/j.psyneuen.2019.104386

69. Winokur G, Black DW, Nasrallah A. DST nonsuppressor status: relationship to speci c aspects of the depressive syndrome. Biol Psychiatry. 1987;22(3):360–368. doi: 10.1016/0006-3223(87)90153-3

70. Juruena MF, Bocharova M, Agustini B, Young AH. Atypical depression and non-atypical depression: Is HPA axis function a biomarker? A systematic review. J Affect Disord. 2018;233:45–67. doi: 10.1016/j.jad.2017.09.052

71. Herane-Vives A, Papadopoulos A, de Angel V, Chua K-C, Soto L, Chalder T, Young AH, Cleare AJ. Cortisol Levels in Chronic Fatigue Syndrome and Atypical Depression Measured Using Hair and Saliva Specimens. J Affect Disord. 2020;267:307–314. doi: 10.1016/j.jad.2020.01.146

72. Geracioti TD, Loosen PT, Orth DN. Low cerebrospinal  uid corticotropin-releasing hormone concentrations in eucortisolemic depression. Biol Psychiatry. 1997;42(3):165–174. doi: 10.1016/S00063223(96)00312-5

73. Anisman H, Ravindran AV, Grif ths J, Merali, Z. Endocrine and cytokine correlates of major depression and dysthymia with typical or atypical features. Mol Psychiatry. 1999;4(2):182–188. doi: 10.1038/sj.mp.4000436

74. Krizhanovskij AS. Shhedrina LV, Dubinina EE, Mazo GJe. Rol’ nejrojendokrinnyh pokazatelej v formirovanii terapevticheskoj rezistentnosti pri depressivnom rasstrojstve. Psihicheskoe zdorov’e. 2017;15(4):10–16. (In Russ.).

75. Sachar EJ, Hellman L, Fukushima DK, Gallagher TF. Cortisol production in depressive illness. A clinical and biochemical clarification. Arch Gen Psychiatry. 1970;23(4):289–298. doi: 10.1001/archpsyc.1970.017500

76. Keller J, Gomez R, Williams G, Lembke A, Lazzeroni L, Murphy GM, Schatzberg AF. HPA Axis in Major Depression: Cortisol, Clinical Symptomatology, and Genetic Variation Predict Cognition. Mol Psychiatry. 2017;22(4):527–536. doi: 10.1038/mp.2016.120

77. Hinkelmann K, Moritz S, Botzenhardt J, Muhtz C, Wiedemann K, Kellner M, Otte C. Changes in cortisol secretion during antidepressive treatment and cognitive improvement in patients with major depression: A longitudinal study. Psychoneuroendocrinology. 2012;37(5):685–692. doi: 10.1016/j.psyneuen.2011.08.012

78. Zhong X, Ning Y, Gu Y, Wu Z, Ouyang C, Liang W, Сhen B, Peng Q, Mai N, Wu Y, Chen X, Huang X, Pan S. A reliable global cognitive decline and cortisol as an associated risk factor for patients with late-life depression in the short term: A 1-year prospective study. J Affect Disord. 2018;240:214–219. doi: 10.1016/j.jad.2018.07.052

79. Nolan M, Roman E, Nasa A, Levins KJ, O’Hanlon E, O’Keane V, Roddy DW. Hippocampal and Amygdalar Volume Changes in Major Depressive Disorder: A Targeted Review and Focus on Stress. Chronic stress. 2020;4:2470547020944553. doi: 10.1177/2470547020944553

80. Nguyen LH, Kakeda S, Watanabe K, Katsuki A, Sugimoto K, Igata N, Shinkai T, Abe O, Korogi Y, Ikenouchi A, Yoshimura R. Brain structural network alterations related to serum cortisol levels in drugnaïve,  rst-episode major depressive disorder patients: a source-based morphometric study. Sci Rep. 2020;10(1):22096. doi: 10.1038/s41598-020-79220-2

81. Georgotas A, McCue RE, Kim M, Hapworth WE, Reisberg B, Stoll PM, Sinaiko E, Fanelli C, Stokes PE. Dexamethasone suppression in dementia, depression, and normal aging. Am J Psychiatry. 1986;143(4):452–456. doi: 10.1176/ajp.143.4.452

82. Coryell W, Schlesser M. The Dexamethasone Suppression Test and Suicide Prediction. Am J Psychiatry. 2001;158(5):748–753. doi: 10.1176/appi.ajp.158.5.748

83. Coryell W, Young E, Carroll B. Hyperactivity of the hypothalamic-pituitary-adrenal axis and mortality in major depressive disorder. Psychiatry Res. 2006;142(1):99–104. doi: 10.1016/j.psychres.2005.08.009

84. O’Connor DB, Ferguson E, Green JA, O’Carroll RE, O’Connor RC. Cortisol levels and suicidal behavior: A meta-analysis. Psychoneuroendocrinology. 2016;63:370– 379. doi: 10.1016/j.psyneuen.2015.10.011

85. Fischer S, Macare C, Cleare AJ. Hypothalamic-pituitary-adrenal (HPA) axis functioning as predictor of antidepressant response-Meta-analysis. Neurosc Biobehav Rev. 2017;83:200–211. doi: 10.1016/j.neubiorev.2017.10.012

86. Choi KW, Na EJ, Fava M, Mischoulon D, Cho H, Jeon HJ. Increased adrenocorticotropic hormone (ACTH) levels predict severity of depression after six months of follow-up in outpatients with major depressive disorder. Psychiatry Res. 2018;270:246–252. doi: 10.1016/j.psychres.2018.09.0

87. Kennis M, Gerritsen L, van Dalen M, Williams A, Cuijpers P, Bockting C. Prospective biomarkers of major depressive disorder: a systematic review and meta-analysis. Mol Psychiatry. 2020;25(2):321–338. doi: 10.1038/s41380-019-0585-z

88. McAllister-Williams RH, Ferrier IN, Young AH. Mood and neuropsychological function in depression: the role of corticosteroids and serotonin. Psychol Med. 1998;28(3):573–584. doi: 10.1017/s0033291798006680

89. Pariante CM, Makoff A, Lovestone S, Feroli S, Heyden A, Miller AH, Kerwin RW. Antidepressants enhance glucocorticoid receptor function in vitro by modulating the membrane steroid transporters. Br J Pharmacol. 2001;134(6):1335–1343. doi: 10.1038/sj.bjp.0704368

90. Anacker C, Zunszain PA, Carvalho LA. The glucocorticoid receptor: pivot of depression and of antidepressant treatment? Psychoneuroendocrinology. 2011;36(3):415–425. doi: 10.1016/j.psyneuen.2010.03.007

91. Gao S-F, Bao A-M. Corticotropin-Releasing Hormone, Glutamate, and g-Aminobutyric Acid in Depression. Neuroscientist. 2011;17(1):124–144. doi: 10.1177/1073858410361780

92. Gorobec LN, Bulanov VS, Litvinov AV. Dinamika urovnej kortizola i degidrojepiandrosterona-sul’fata u bol’nyh s rasstrojstvami affektivnogo spektra v processe terapii venlafaksinom. Psihiatrija i psihofarmakoterapija. 2021;23(5):14–21. (In Russ.).

93. Duval F, Mokrani MC, Ortiz JAM, Schulz P, Champeval C, Macher J-P. Neuroendocrine predictors of the evolution of depression. Dialogues Clin Neurosci. 2005;7(3):273–282. doi: 10.31887/DCNS.2005.7.3/fduval

94. Schüle C. Neuroendocrinological mechanisms of actions of antidepressant drugs. J Neuroendocrinol. 2007;19(3):213–226. doi: 10.1111/j.1365-2826.2006.01516.x

95. Jani BD, McLean G, Nicholl BI, Barry SJE, Sattar N, Mair FS, Cavanagh J. Risk assessment and predicting outcomes in patients with depressive symptoms: a review of potential role of peripheral blood based biomarkers. Front Hum Neurosci. 2015;9:18. doi: 10.3389/fnhum.2015.00018

96. Ribeiro SC, Tandon R, Grunhaus L, Greden JF. The DST as a predictor of outcome in depression: a meta-analysis. Am J Psychiatry. 1993;150(11):1618–1629. doi: 10.1176/ajp.150.11.1618

97. Kabia FM, Rhebergen D, van Exel E, Stek ML, Comijs HC. The predictive value of cortisol levels on 2-year course of depression in older persons. Psychoneuroendocrinology. 2016;63:320–326. doi: 10.1016/j.psyneuen.2015.10.006

98. Kurczewska E, Ferensztajn-Rochowiak E, Rybakowski F, Michalak M, Rybakowski J. Treatment-resistant depression: neurobiological correlates and the effect of sleep deprivation with sleep phase advance for the augmentation of pharmacotherapy. World J Biol Psychiatry. 2021;22(1):58–69. doi: 10.1080/15622975.2020.17554

99. Blasco BV, Garcia-Jimenez J, Bodoano I, Gutiérrez-Rojas L. Obesity and Depression: Its Prevalence and In uence as a Prognostic Factor: A Systematic Review. Psychiatry Investig. 2020;17(8):715–724. doi: 10.30773/pi.2020.0099

100. Yu M, Zhang X, Lu F, Fang L. Depression and Risk for Diabetes: A Meta-Analysis. Can J Diabetes. 2015;39(4):266–272. doi: 10.1016/j.jcjd.2014.11.006

101. Strik JJ, Honig A, Maes M. Depression and myocardial infarction: relationship between heart and mind. Prog Neuropsychopharmacol Biol Psychiatry. 2001;25(4):879–892. doi: 10.1016/s0278-5846(01)00150-6

102. Vogelzangs N, Suthers K, Ferruci L, Simonsick EM, Ble A, Schrager M, Bandinelli S, Lauretani F, Giannelli SV, Penninx BW. Hypercortisolemic Depression is Associated with the Metabolic Syndrome in LateLife. Psychoneuroendocrinology. 2007;32(2):151–159. doi: 10.1016/j.psyneuen.2006.11.009

103. Thakore JH, Richards PJ, Reznek RH, Martin A, Dinan TG. Increased intra-abdominal fat deposition in patients with major depressive illness as measured by computed tomography. Biol Psychiatry. 1997;41(11):1140–1142. doi: 10.1016/s0006-3223(97)85394-2

104. Pfohl B, Rederer M, Coryell W, Stangl D. Association between Post-Dexamethasone Cortisol Level and Blood Pressure in Depressed Inpatients. J Nerv Ment Dis. 1991;179(1):44–47. doi: 10.1097/00005053-199101000-00009

105. Jokinen J, Nordström P. HPA axis hyperactivity and cardiovascular mortality in mood disorder inpatients. J Aff Disord. 2009;116(1–2):88–92. doi: 10.1016/j.jad.2008.10.025

106. Wolkowitz OM, Reus VI, Chan T, Manfredi F, Raum W, Johnson R, Canick J. Antiglucocorticoid treatment of depression: double-blind ketoconazole. Biol Psychiatry. 1999;45(8):1070–1074. doi: 10.1016/s0006-3223(98)00267-4

107. Reus VI, Wolkowitz OM. Antiglucocorticoid drugs in the treatment of depression. Expert Opin Investig Drugs. 2001;10(10):1789–1796. doi: 10.1517/13543784.10.10.1789

108. Murphy BE, Ghadirian AM, Dhar V. Neuroendocrine responses to inhibitors of steroid biosynthesis in patients with major depression resistant to antidepressant therapy. Can J Psychiatry. 1998;43(3):279–286. doi: 10.1177/070674379804300307

109. Murphy BE, Dhar V, Ghadirian AM, Chouinard G, Keller R. Response to steroid suppression in major depression resistant to antidepressant therapy. J Clin Psychopharmacol. 1991;11(2):121–126.

110. Rogoz Z, Skuza G, Wojcikowski J, Daniel WA, Wrobel A, Dudek D, Zieba A. Effect of metyrapone supplementation on imipramine therapy in patients with treatment-resistant unipolar depression. Pol J Pharmacol. 2004;56(6):849–855.

111. Claes SJ. Corticotropin-releasing hormone (CRH) in psychiatry: from stress to psychopathology. Ann Med. 2004;36(1):50–61. doi: 10.1080/07853890310017044

112. Kaur M, Sanches M. Experimental Therapeutics in Treatment-Resistant Major Depressive Disorder. J Exp Pharmacol. 2021;13:181–196. doi: 10.2147/JEP.S259302

113. Gallagher P, Malik N, Newham J, Young AH, Ferrier IN, Mackin P. Antiglucocorticoid treatments for mood disorders. Cochrane Database Syst Rev. 2008. doi: 10.1002/14651858.cd005168.pu

114. Lombardo G, Enache D, Gianotti L, Schatzberg AF, Young AH, Pariante CM, Mondelli V. Baseline cortisol and the ef cacy of antiglucocorticoid treatment in mood disorders: A meta-analysis. Psychoneuroendocrinology. 2019;110:104420. doi: 10.1016/j.psyneuen.2019.104420

115. Block TS, Kushner H, Kalin N, Nelson C, Belanoff J, Schatzberg A. Combined Analysis of Mifepristone for Psychotic Depression: Plasma Levels Associated With Clinical Response. Biol Psychiatry. 2018;84(1):46–54. doi: 10.1016/j.biopsych.2018.01.008

116. Blasey CM, Block TS, Belanoff JK, Roe RL. Efficacy and Safety of Mifepristone for the Treatment of Psychotic Depression. J Clin Psychopharmacol. 2011;31(4):436–440. doi: 10.1097/jcp.0b013e3182239191

117. Ding Y, Wei Z, Yan H, Guo W. Ef cacy of Treatments Targeting Hypothalamic-Pituitary-Adrenal Systems for Major Depressive Disorder: A Meta-Analysis. Front Pharmacol. 2021;12:1–14. doi: 10.3389/fphar.2021.73215


Review

For citations:


Yunilayne O.A., Starostina E.G., Oleichik I.V. Hypothalamo-Pituitary-Adrenal Axis in Depressive Disorders and Treatment Resistance. Psychiatry (Moscow) (Psikhiatriya). 2023;21(1):73-90. (In Russ.) https://doi.org/10.30629/2618-6667-2023-21-1-73-90

Views: 1720


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)