Glutamate metabolizing enzymes in frontal, cingulate and cerebellar cortex: anomalities revealed in schizophrenia
https://doi.org/10.30629/2618-6667-2018-77-16-25
Abstract
Aim: to compare distributions of glutamine synthetase (GS) and glutamate dehydrogenase (GDH) activities and amounts of their immunoreactive forms amongst frontal, anterior, posterior cingulate, and cerebellar cortices in schizophrenia cases and controls. Material and methods: group of patients with schizophrenia: 4 men and 4 women (36–80 years old) diagnosed according ICD-10 (F20.00, F20.02, F20.31, and F20.50 — 3, 3, 1 and 1 patient). Control group: 8 men and 1 woman (29–79 years old). No significant between-group differences were found in age and postmortem interval (p > 0,05). Non-parametric statistics was used. Results: no signifcant between-group difference was observed in GS activity in investigated brain structures (p > 0,05). Following differences were found in schizophrenia compared with controls: amount of immunoreactive GS was decreased in frontal cortex (p < 0,001), it was increased in posterior cingulate cortex and cerebellum (p < 0,001 and p < 0,004), but unchanged in anterior cingulate cortex, whereas level of GS-like protein (GSLP) was signifcantly elevated in all four brain structures (р < 0,004, р < 0,02, р < 0,04, and р < 0,001). When compared with controls, schizophrenia cases displayed elevated GDH activity in frontal, posterior cingulate cortex and cerebellum (p < 0,004, p < 0,05, and p < 0,002), but unchanged in anterior cingulate cortex. When compared with control, following differences were found in schizophrenia: elevation in levels of immunoreactive GDHI, GDHII, and GDHIII in frontal cortex (р < 0,008, р < 0,003, and р < 0,001); elevation in levels of immunoreactive GDHI, GDHII, and GDHIII in posterior cingulate cortex (р < 0,004, р < 0,001, and р < 0,02); elevation in levels of immunoreactive GDHII and GDHIII in cerebellum (р < 0,02 and р < 0,001). No between-group differences in levels of immunoreactive GDH forms were found in anterior cingulate cortex. Conclusion: alteration in levels of GS, GSLP, and GDH forms in brain of patients with schizophrenia is one of causes of glutamate metabolism disturbances in these brain structures and an important aspect of schizophrenia pathogenesis.
About the Authors
Olga SavushkinaRussian Federation
PhD in biology, leading researcher
Irina Boksha
Russian Federation
PhD in biology, doctor of natural sciences, chief researcher
Elena Tereshkina
Russian Federation
PhD in biology, senior researcher
Tatyana Prokhorova
Russian Federation
researcher
Elena Vorobyeva
Russian Federation
PhD in biology, researche
Gulnur Burbaeva
Russian Federation
PhD in biology, doctor of natural sciences, professor
References
1. Gluck M.R., Thomas R.G., Davis K.L. et al. Implications for altered glutamate and GABA metabolism in the dorsolateral prefrontal cortex of aged schizophrenic patients. Am. J. Psychiatry. 2002;159:1165– 1173. doi: 10.1176/appi.ajp.159.7.1165
2. Hu W., MacDonald M.L., Elswick D.E., Sweet R.A. The glutamate hypothesis of schizophrenia: evidence from human brain tissue studies. Ann. NY Acad. Sci. 2015;1338:38–57. doi: 10.1111/nyas.12547
3. Mouchlianitis E., Bloomfield M.A., Law V., Beck K., Selvaraj S., Rasquinha N., Waldman A., Turkheimer F.E., Egerton A., Stone J., Howes O.D. Treatment-resistant schizophrenia patients show elevated anterior cingulate cortex glutamate compared to treatment-respon-sive. Schizophr. Bull. 2016;42(3):744–752. doi: 10.1093/schbul/sbv151
4. Funk A.J., Rumbaugh G., Harotunian V., McCullumsmith R.E., Meador-Woodruff J.H. Decreased expression of NMDA receptor-associated proteins in frontal cortex of elderly patients with schizophrenia. Neuroreport. 2009;20(11):1019–1022. http://doi.org/10.1097/ WNR.0b013e32832d30d9
5. Derouiche A., Frotscher M. Astroglial processes around identified glutamatergic synapses contain glutamine synthetase, evidence for transmitter degradation. Brain Res. 1991;552(2):346–350.
6. Boksha I.S., Tereshkina E.B., Burbaeva G.Sh. Glutamine synthetase and glutamine synthetase-like protein from human brain, purification and comparative characterization. J. Neurochem. 2000;75:2574– 2582.
7. Shimizu E., Shirasawa H., Kodama K., Kuroyanagi H., Shirasawa T., Sato T., Simizu B. Glutamate dehydrogenase mRNA is immediately induced after phencyclidine treatment in the rat brain. Schizophr. Res. 1997;25(3):251–258.
8. Smesny S., Gussew A., Biesel N.J., Schack S., Walther M., Rzanny R., Milleit B., Gaser C., Sobanski T., Schultz C.C., Amminger P., Hipler U.C., Sauer H., Reichenbach J.R. Glutamatergic dysfunction linked to energy and membrane lipid metabolism in frontal and anterior cingulate cortices of never treated first-episode schizophrenia patients. Schizophr. Res. 2015;168(1–2):322–329. http://doi. org/10.1016/j.schres.2015.07.013
9. Reid M.A., Stoeckel L.E., White D.M., Avsar K.B., Bolding M.S., Akella N.S., Knowlton R.C., den Hollander J.A., Lahti A.C. Assessments of function and biochemistry of the anterior cingulate cortex in schizophrenia. Biol. Psychiatry. 2010;68(7):625–633. doi: 10.1016/j. biopsych.2010.04.013
10. Mitelman S.A., Shihabuddin L., Brickman A.M., Hazlett E.A., Buchsbaum M.S. Volume of the cingulate and outcome in schizophrenia. Schizophr. Res. 2005;72(2–3):91–108.
11. Vostrikov V.M., Artiukhova O.A., Kholmova M.A., Samorodov A.V., Uranova N.A. The spatial organization of oligodendrocytes and pyramidal neurons in the frontal limbic cortex of patients with schizophrenia and healthy people: a computer morphometric study. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2013;113(12):67–70. (In Russ.).
12. Roberts R.S., Barksdale K.A., Roche J.K., Lanti A.C. Decreased syn- aptic and mitochondrial density in the postmortem anterior cingulated cortex in schizophrenia. Schizophr. Res. 2015;168(1–2):543–553. https://doi.org/10.1016/j.schres.2015.07.016/
13. Nelson B.D., Bjorkquist O.A., Olsen E.K., Herbener E.S. Schizophrenia symptom and functional correlates of anterior cingulate cortex activation to emotion stimuli: An fMRI investigation. Psychiatry Research — Neuroimaging. 2015;234(3):285-291. doi: 10.1016/j.pscychresns.2015.11.001
14. Egerton A., Brugger S., Raffin M., Barker G.J., Lythgoe D.J., McGuire P.K., Stone J.M. Anterior cingulate glutamate levels related to clinical status following treatment in first-episode schizophrenia. Neuropsychopharmacology. 2012;37(11):2515–2521. doi: 10.1038/ npp.2012.113
15. Diamond A. Close interrelation of motor development and cognitive development and of the cerebellum and prefrontal cortex. Child Dev. 2000;71(1):44–45.
16. Bolbecker A.R., Petersen I.T., Kent J.S., Howell J.M., O’Donnell B.F., Hetrick W.P. New insights into the nature of cerebellar-dependent eyeblink conditioning deficits in schizophrenia: A hierarchical linear modeling approach. Front. Psychiatry. 2016;25(7):4. http://doi.org/10.3389/fpsyt.2016.00004
17. Miquel M., Vazquez-Sanroman D., Carbo-Gas M., Gil-Miravet I., Sanchis-Segura C., Carulli D., Manzo J., Coria-Avila G.A. Have we been ignoring the elephant in the room? Seven arguments for considering the cerebellum as part of addiction circuitry. Neurosci. Biobehav. Rev. 2016;60:1–11. doi: 10.1016/j.neubiorev.2015.11.005
18. Rasser P.E., Schall U., Peck G., Cohen M., Johnston P., Khoo K., Carr V.J., Ward P.B., Thompson P.M. Cerebellar grey matter deficits in first-episode schizophrenia mapped using cortical pattern matching. Neuroimage. 2010;53(4):1175–1180. http://doi.org/10.1016/j.neu- roimage.2010.07.018
19. Iqbal K., Ottaway J.H. Glutamine synthetase in muscle and kidney. Biochem. 1970;119:145–156.
20. Fahien L.A., Wiggert B.O., Cohen P.P. Crystallization and kinetic properties of glutamate dehydrogenase from frog liver. J. Biol. Chem. 1965;240:1083–1090.
21. Tereshkina E.B., Bokina I.S., Savushkina O.K., Burbaeva G.Sh. Glutamine synthetase and related protein in the frontal cortex in schizophrenia. Zhurnal nevrologii i psikhiatrii im. S.S. Korsakova. 2000;100(7):51–53. (In Russ.).
22. Boksha I.S., Savushkina O.K., Tereshkina E.B., Prokhorova T.A., Mukaetova-Ladinska E.B. Enzymes of Glutamate System. In: Parrot S., Denoroy L. (eds.) Biochemical Approaches for Glutamatergic Neurotransmission. Neuromethods, vol 130. New York, NY, Humana Press; 2018:469–506. doi: https://doi.org/10.1007/978-1-4939-7228-9_15
23. Burbaeva G.S., Boksha I.S., Tereshkina E.B., Savushkina O.K., Starodubtseva L.I., Turishcheva M.S., Mukaetova-Ladinska E. Systemic neurochemical alterations in schizophrenic brain, glutamate metabolism in focus. Neurochem. Res. 2007;32(9):1434–1444. doi.org/10.1007/ s11064-007-9328-7.
Review
For citations:
Savushkina O., Boksha I., Tereshkina E., Prokhorova T., Vorobyeva E., Burbaeva G. Glutamate metabolizing enzymes in frontal, cingulate and cerebellar cortex: anomalities revealed in schizophrenia. Psychiatry (Moscow) (Psikhiatriya). 2018;1(77):16-25. (In Russ.) https://doi.org/10.30629/2618-6667-2018-77-16-25