Preview

Psychiatry (Moscow) (Psikhiatriya)

Advanced search

Neurobiology of Schizophrenia (to the Construction of Clinical and Biological Model)

https://doi.org/10.30629/2618-6667-2021-19-1-6-15

Abstract

The objective: of the study was to present the main provisions of a new clinical and biological model of schizophrenia, which establishes links between disorders in the field of biological processes and the formation of positive and negative in the general psychopathological space of schizophrenia on the basis of the analysis of long-term results of clinical and biological research of the Mental Health Research Centre.

Material and method: by keywords “schizophrenia”, “biological hypotheses of schizophrenia”, “neuroinflammation”, “neurodegeneration”; “positive disorders”, “negative disorders”, “neuroimmune relationships”, “catabolism
of tryptophan”, “activation of microglia”, publications from PubMed/MEDLINE databases, RSCI and other sources were analyzed
over the past 10 years in comparison with the results of clinical and biological studies of schizophrenia at the Mental Health Science Center.

Results: comparison and analysis of current biological hypotheses of schizophrenia indicates that immunological studies are the most promising for solving the problem of establishing links between disorders of  neurobiological processes and psychopathological specificities of  schizophrenia. Within the framework of the new clinical and biological  model, a key role is assigned to the process of neuroinflammation, which determines the pathogenesis of both negative and positive disorders by various, albeit interrelated, molecular mechanisms. One of these mechanisms,  associated with the development of reversible positive symptom complexes, is based on an imbalance in the neurotransmitter  systems, which is formed as a result of the effect of proinflammatory  cytokines on tryptophan catabolism. Another mechanism that determines the  development of negative symptom complexes is associated with the influence of cytotoxic metabolites on the processes of neurodegeneration. 

Conclusion:  a new clinical and biological model of schizophrenia establishes a paradigm of the relationship between disorders in the sphere of biological processes determined by neuroinflammation/inflammation and the  formation of the main procedural dimensions — positive and negative disorders in the general psychopathological space of schizophrenia. This model makes it possible to clarify some general provisions related to the pharmacotherapy of schizophrenia and the relief of negative disorders, and also serves as the basis for the development of new approaches to early diagnosis, clinical and social prognosis. 

About the Authors

T. P. Klyushnik
FSBSI “Mental Health Research Centre”
Russian Federation

Professor, MD, PhD, Dr. of Sci. (Med.), Head of the Laboratory of Neuroimmunology, Director

Moscow



A. B. Smulevich
FSBSI “Mental Health Research Centre”; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

Professor, MD, PhD, Dr. of Sci. (Med.), Member of the Russian Academy of Sciences, Head of Department; Head of Department

Moscow



S. A. Zozulya
FSBSI “Mental Health Research Centre”
Russian Federation

PhD, Cand. of Sci. (Biol.), Leading Researcher, Laboratory of Neuroimmunology

Moscow



E. I. Voronova
FSBSI “Mental Health Research Centre”; Sechenov First Moscow State Medical University (Sechenov University)
Russian Federation

MD, PhD, Cand. of Sci. (Med.), Associate Professor; Leading Researcher

Moscow



References

1. Sumiyoushi T, Kunugi H, Nakagone K. Serotonin and dopamine receptors in motivational and cognitive disturbances of schizophrenia. Front. Neurosci. 2014;8:395:1–5. DOI: 10.3389/fnins.2014.00395

2. Devor A, Andreassen OA, Wang Y, Mäki-Marttunen T, Smeland OB, Fan C-C, Schork AJ, Holland D, Thompson WK, Witoelar A, Chen C-H, Desikan RS, McEvoy LK, Djurovic S, Greengard P, Svenningsson P, Einevoll GT, Dale AM. Genetic evidence for role of integration of fast and slow neurotransmission in schizophrenia. Mol. Psychiatry. 2017;22(6):792–801. DOI: 10.1038/mp.2017.33

3. McCutcheon RA, Krystal JH, Howes OD. Dopamine and glutamate in schizophrenia: biology, symptoms and treatment. World Psychiatry. 2020;19(1):15–33. DOI: 10.1002/wps.20693

4. Moghaddam B, Javitt D. From revolution to evolution: The glutamate hypothesis of schizophrenia and its implication for treatment. Neuropsychopharmacology. 2012;37:4–15. DOI: 10.1038/npp.2011.181

5. Pickar D, Litman RE, Eric Konicki P, Wolkowitz OM, Breier A. Neurochemical and neural mechanism of positive and negative symptoms in schizophrenia. Mod. Probl. Pharmacopsychiatry. 1990;24:124–151. DOI: 10.1159/

6. Galderisi S, Merlotti E, Mucci A. Neurobiology background of negative symptoms. Eur. Arch. Psychiatry Clin. Neurosci. 2015;265(7):243–258. DOI: 10.1007/s00406-015-0590-4

7. Sekar A, Bialas AR, de Rivera H, Davis A, Hammond TR, Kamitaki N, Tooley K, Presumey J, Baum M, Van Doren V, Genovese G, Rose SA, Handsaker RE, Daly MJ, Carroll МС, Stevens B, McCarroll SA. Schizophrenia risk from complex variation of complement component. Nature. 2016;11;530(7589):177–183. DOI: 10.1038/nature16549

8. Rund BR. Is schizophrenia a neurodegenerative disorder? Nordic Journal of Psychiatry. 2009;63:196–201. DOI: 10.1080/08039480902767286

9. Kraepelin E. Dementia Praecox and Paraphrenia. Huntington, NY: Kreiger; 1971.

10. Hazlett EA, Buchsbaum MS, Haznedar MM, Newmark R, Goldstein KE, Zelmanova Y, Glanton CF, Torosjan Y, New AS, Lo JN, Mitropoulou V, Siever LJ. Cortical gray and white matter volume in unmedicated schizotypal and schizophrenia patients. Schizophr. Res. 2008;101(1–3):111–123. https://psycnet.apa.org/doi/10.1016/j.schres.2007.12.472

11. Koutsouleris N, Gaser C, Jager M, Bottlender R, Frodl T, Holzinger S, Schmitt GJ, Zetzsche T, Burgermeister B, Scheuerecker J, Born C, Reiser M, Moller HJ, Meisenzahl EM. Structural correlates of psychopathological symptom dimensions in schizophrenia: a voxel-based morphometric study. NeuroImage. 2008;39(4):1600–1612. DOI: 10.1016/j.schres.2008.06.023

12. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. DOI: 10.3390/molecules24081583.PMID: 31013638

13. Maes M, Sirivichayakul S, Matsumoto AK, Maes A, Michelin AP, de Oliveira Semeão L, de Lima Pedrão JV, Moreira EG, Barbosa DS, Geffard M, Carvalho AF, Kanchanatawan B. Increased levels of plasma tumor necrosis factor-D mediate schizophrenia symptom dimensions and neurocognitive impairments and are inversely associated with natural igm directed to malondialdehyde and paraoxonase 1 activity. Mol. Neurobiol. 2020;57(5):2333–2345. DOI: 10.1007/s12035-020-01882-w

14. Wagner H. Endogenous TLR ligands and autoimmunity. Adv. Immunol. 2006;91:159–173. DOI: 10.1016/S0065-2776(06)91004-9.

15. Gallego JA, Blanco EA, Husain-Krautter S, Madeline Fagen E, Moreno-Merino P, Del Ojo-Jiménez JA, Ahmed A, Rothstein TL, Lencz T, Malhotra AK. Cytokines in cerebrospinal fluid of patients with schizophrenia spectrum disorders: New data and an updated meta-analysis. Schizophr. Res. 2018;202:64–71. DOI: 10.1016/j.schres.2018.07.019

16. Wang AK, Brian J, Miller BJ. Meta-analysis of cerebrospinal fluid cytokine and tryptophan catabolite alterations in psychiatric patients: comparisons between schizophrenia, bipolar disorder, and depression. Schizophr. Bull. 2018;44(1):75–83. DOI: 10.1093/schbul/sbx035

17. Khandaker GM, Cousins L, Deakin J, Lennox BR, Yolken R, Jones PB. Inflammation and immunity in schizophrenia: implications for pathophysiology and treatment. Lancet Psychiatry. 2015;2(3):258–270. DOI: 10.1016/S2215-0366(14)00122-9

18. Müller N. Inflammation in schizophrenia: pathogenetic aspects and therapeutic considerations. Schizophr. Bull. 2018;44(5):973–982. DOI: 10.1093/schbul/sby024

19. Snezhnevsky AV. Schizophrenia. Clinic and pathogenesis. M., 1969. (In Russ.).

20. Kliushnik TP, Zozulya SA, Androsova LV, Sarmanova ZV, Otman IN, Dupin AM, Panteleeva GP, Oleichik IV, Abramova LI, Stolyarov SA, Shypilova ES, Borisova OA. Immunological monitoring of endogenous attack-like psychoses. Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2014;114(2):37–42. (In Russ.).

21. Smulevich AB. Negative Disorders in Schizophrenia. М.: MEDpress-inform, 2020. (In Russ.).

22. Gibney SM, McGuinness B, Prendergast C, Harkin A, Connor TJ. Poly I. C-induced activation of the immune response is accompanied by depression and anxiety-like behaviours, kynurenine pathway activation and reduced BDNF expression. Brain Behav. Immun. 2013;28:170–181. DOI: 10.1016/j.bbi.2012.11.010

23. Fazio F, LionettoL, Curto М, Iacovelli L, Cavallari M, Zappulla C, Ulivieri M, Napoletano F, Capi M, Corigliano V, Scaccianoce S, Caruso A, Miele J, De Fusco A, Di Menna L, Comparelli A, De Carolis A, Gradini R, Nisticò R, De Blasi A, Girardi P, Bruno V, Battaglia G, Nicoletti F, Simmaco M. X anthurenic acid activates MGLU2/3 metabotropic glutamate receptors and is a potential trait marker for schizophrenia Sci. Rep. 2015;5:17799. DOI: 10.1038/srep17799

24. Plitman E, Iwata Y, Caravaggio F, Nakajima S, Chung JK, Gerretsen P, Kim J, Takeuchi H, Chakravarty MM, Remington G, Graff-Guerrero A. Kynurenic acid in schizophrenia: a systematic review and meta-analysis. Schizophr. Bull. 2017;43(4):764–777. DOI: 10.1093/schbul/sbw221

25. Haroon E, Miller AH, Sanacora G. Inflammation, glutamate, and glia: a trio of trouble in mood disorders. Neuropsychopharmacology. 2017;42(1):193–215. DOI: 10.1038/npp.2016.199

26. Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583. DOI: 10.3390/molecules24081583

27. Hoirisch-Clapauch S, Amaral OB, Mezzasalma MA, Panizzutti R, Nardi AE. Dysfunction in the coagulation system and schizophrenia. Transl. Psychiatry. 2016;6(1):e704. DOI: 10.1038/tp.2015.204

28. Witkowski M, Landmesser U, Rauch U. Tissue factor as a link between inflammation and coagulation. Trends Cardiovasc. Med. 2016;26(4):297–303. DOI: 10.1016/j.tcm.2015.12.001

29. Brusov OS, Simashkova NV, Karpova NS, Faktor MI, Nikitina SG. Thrombodynamic parameters of hypercoagulation of blood in children with childhood autism and schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2019,1:45–49. (In Russ.). DOI: 10.17116/jnevro201911901145

30. Brusov OS, Oleichik IV, Karpova NS, Faktor MI, Sizov SV. Correlation of thrombodynamic parameters of coagulation and negative syndromes in patients with schizophrenia. S.S. Korsakov Journal of Neurology and Psychiatry/Zhurnal nevrologii i psihiatrii imeni S.S. Korsakova. 2020;12:86–91. (In Russ.) DOI: 10.17116/jnevro202012012186

31. Quaegebeur A, Lange C, Carmeliet P. The neurovascular link in health and disease: molecular mechanisms and therapeutic implications. Neuron. 2011;71(3):406–424. DOI: 10.1016/j.neuron.2011.07.013

32. Erhardt S, Schwieler L, Imbeault S, Engberg G. The kynurenine pathway in schizophrenia and bipolar disorder. Neuropharmacology. 2017;112(PtB):297–306. DOI: 10.1016/j.neuropharm.2016.05.020

33. Weinberger DR. Future of days past: neurodevelopment and schizophrenia. Schizophr. Bull. 2017;43(6):1164–1168. DOI: 10.1093/schbul/sbx118

34. Strauss JS, Carpenter W, Bartko J. Part III. Speculations on the processes that underlie schizophrenic symptoms and signs. Schizophr. Bull. 1974;1(11):61–69.

35. Crow T. The two-syndrome concept: origins and current status. Schizophr. Bull. 1985;11(3):471–488.

36. Tandon R, DeQuardo JR, Taylor SF, McGrath M, Jibson M, Eiser A, Goldman M. Phasic and enduring negative symptoms in schizophrenia: biological markers and relationship to outcome. Schizophr. Res. 2000;51:185–201.

37. van Rooijen G, Isvoranu AM, Meijer CJ, van Borkulo CD, Ruhé HG, de Haan L. A symptom network structure of the psychosis spectrum. Schizophr. Res. 2017;189:75–83. DOI: 10.1016/j.schres.2017.02.018

38. 38 Molochek AI. Psychoreactive mechanisms in schizophrenia. Problems of forensic psychiatry. M., 1941. Is. 3:94–117. (In Russ.).

39. Snezhnevsky AV. Schizophrenia. Multidisciplinary study. M., 1972. (In Russ.).

40. Androsova LV, Mikhaylova NM, Zozulya SA, Dupin AM, Klyushnik TP. Inflammatory markers in schizophrenia in aged. Zhurnal Nevrologii i Psihiatrii imeni S.S. Korsakova. 2014;114(12):60–64. (In Russ.). DOI: 10.17116/jnevro201411412160-64

41. Pedraz-Petrozzi B, Elyamany O, Rummel C, Mulert C. Effects of inflammation on the kynurenine pathway in schizophrenia — a systematic review. J. Neuroinflammation. 2020;17(1):56. DOI: 10.1186/s12974-020-1721-z


Review

For citations:


Klyushnik T.P., Smulevich A.B., Zozulya S.A., Voronova E.I. Neurobiology of Schizophrenia (to the Construction of Clinical and Biological Model). Psychiatry (Moscow) (Psikhiatriya). 2021;19(1):6-15. (In Russ.) https://doi.org/10.30629/2618-6667-2021-19-1-6-15

Views: 1990


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1683-8319 (Print)
ISSN 2618-6667 (Online)